Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569052

RESUMO

BACKGROUND: Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation crystals. In this way, standard gamma cameras can localize É£-rays with energies typically ranging from 30 to 360 keV. In the last decade, there has been an increasing interest towards gamma imaging outside this conventional clinical energy range, for example, for theragnostic applications and preclinical multi-isotope positron emission tomography (PET) and PET-SPECT. However, standard gamma cameras are typically equipped with 9.5 mm thick NaI(Tl) crystals which can result in limited sensitivity for these higher energies. PURPOSE: Here we investigate to what extent thicker scintillators can improve the photopeak sensitivity for higher energy isotopes while attempting to maintain spatial resolution. METHODS: Using Monte Carlo simulations, we analyzed multiple PMT-based configurations of gamma detectors with monolithic NaI (Tl) crystals of 20 and 40 mm thickness. Optimized light guide thickness together with 2-inch round, 3-inch round, 60 × 60 mm2 square, and 76 × 76 mm2 square PMTs were tested. For each setup, we assessed photopeak sensitivity, energy resolution, spatial, and depth-of-interaction (DoI) resolution for conventional (140 keV) and high (511 keV) energy É£ using a maximum-likelihood algorithm. These metrics were compared to those of a "standard" 9.5 mm-thick crystal detector with 3-inch round PMTs. RESULTS: Estimated photopeak sensitivities for 511 keV were 27% and 53% for 20 and 40 mm thick scintillators, which is respectively, 2.2 and 4.4 times higher than for 9.5 mm thickness. In most cases, energy resolution benefits from using square PMTs instead of round ones, regardless of their size. Lateral and DoI spatial resolution are best for smaller PMTs (2-inch round and 60 × 60 mm2 square) which outperform the more cost-effective larger PMT setups (3-inch round and 76 × 76 mm2 square), while PMT layout and shape have negligible (< 10%) effect on resolution. Best spatial resolution was obtained with 60 × 60 mm2 PMTs; for 140 keV, lateral resolution was 3.5 mm irrespective of scintillator thickness, improving to 2.8 and 2.9 mm for 511 keV with 20 and 40 mm thick crystals, respectively. Using the 3-inch round PMTs, lateral resolutions of 4.5 and 3.9 mm for 140 keV and of 3.5 and 3.7 mm for 511 keV were obtained with 20 and 40 mm thick crystals respectively, indicating a moderate performance degradation compared to the 3.5 and 2.9 mm resolution obtained by the standard detector for 140 and 511 keV. Additionally, DoI resolution for 511 keV was 7.0 and 5.6 mm with 20 and 40 mm crystals using 60 × 60 mm2 square PMTs, while with 3-inch round PMTs 12.1 and 5.9 mm were obtained. CONCLUSION: Depending on PMT size and shape, the use of thicker scintillator crystals can substantially improve detector sensitivity at high gamma energies, while spatial resolution is slightly improved or mildly degraded compared to standard crystals.

2.
Phys Med Biol ; 68(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36848684

RESUMO

Microscopic nuclear imaging down to spatial resolutions of a few hundred microns can already be achieved using low-energy gamma emitters (e.g.125I, ∼30 keV) and a basic single micro-pinhole gamma camera. This has been applied toin vivomouse thyroid imaging, for example. For clinically used radionuclides such as99mTc, this approach fails due to penetration of the higher-energy gamma photons through the pinhole edges. To overcome these resolution degradation effects, we propose a new imaging approach: scanning focus nuclear microscopy (SFNM). We assess SFNM using Monte Carlo simulations for clinically used isotopes. SFNM is based on the use of a 2D scanning stage with a focused multi-pinhole collimator containing 42 pinholes with narrow pinhole aperture opening angles to reduce photon penetration. All projections of different positions are used to iteratively reconstruct a three-dimensional image from which synthetic planar images are generated. SFNM imaging was tested using a digital Derenzo resolution phantom and a mouse ankle joint phantom containing99mTc (140 keV). The planar images were compared with those obtained using a single-pinhole collimator, either with matched pinhole diameter or with matched sensitivity. The simulation results showed an achievable99mTc image resolution of 0.04 mm and detailed99mTc bone images of a mouse ankle with SFNM. SFNM has strong advantages over single-pinhole imaging in terms of spatial resolution.


Assuntos
Microscopia Nuclear , Tomografia Computadorizada de Emissão de Fóton Único , Camundongos , Animais , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cintilografia , Imagens de Fantasmas , Simulação por Computador
3.
Phys Med Biol ; 66(19)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34492646

RESUMO

SPECT imaging with123I-FP-CIT is used for diagnosis of neurodegenerative disorders like Parkinson's disease. Attenuation correction (AC) can be useful for quantitative analysis of123I-FP-CIT SPECT. Ideally, AC would be performed based on attenuation maps (µ-maps) derived from perfectly registered CT scans. Suchµ-maps, however, are most times not available and possible errors in image registration can induce quantitative inaccuracies in AC corrected SPECT images. Earlier, we showed that a convolutional neural network (CNN) based approach allows to estimate SPECT-alignedµ-maps for full brain perfusion imaging using only emission data. Here we investigate the feasibility of similar CNN methods for axially focused123I-FP-CIT scans. We tested our approach on a high-resolution multi-pinhole prototype clinical SPECT system in a Monte Carlo simulation study. Three CNNs that estimateµ-maps in a voxel-wise, patch-wise and image-wise manner were investigated. As the added value of AC on clinical123I-FP-CIT scans is still debatable, the impact of AC was also reported to check in which cases CNN based AC could be beneficial. AC using the ground truthµ-maps (GT-AC) and CNN estimatedµ-maps (CNN-AC) were compared with the case when no AC was done (No-AC). Results show that the effect of using GT-AC versus CNN-AC or No-AC on striatal shape and symmetry is minimal. Specific binding ratios (SBRs) from localized regions show a deviation from GT-AC≤2.5% for all three CNN-ACs while No-AC systematically underestimates SBRs by 13.1%. A strong correlation (r≥0.99) was obtained between GT-AC based SBRs and SBRs from CNN-ACs and No-AC. Absolute quantification (in kBq ml-1) shows a deviation from GT-AC within 2.2% for all three CNN-ACs and of 71.7% for No-AC. To conclude, all three CNNs show comparable performance in accurateµ-map estimation and123I-FP-CIT quantification. CNN-estimatedµ-map can be a promising substitute for CT-basedµ-map.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Tropanos , Neostriado/metabolismo , Redes Neurais de Computação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tropanos/metabolismo
4.
Phys Med Biol ; 66(12)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34049291

RESUMO

The use of multi-pinhole collimation has enabled ultra-high-resolution imaging of SPECT and PET tracers in small animals. Key for obtaining high-quality images is the use of statistical iterative image reconstruction with accurate energy-dependent photon transport modelling through collimator and detector. This can be incorporated in a system matrix that contains the probabilities that a photon emitted from a certain voxel is detected at a specific detector pixel. Here we introduce a fast Monte-Carlo based (FMC-based) matrix generation method for pinhole imaging that is easy to apply to various radionuclides. The method is based on accelerated point source simulations combined with model-based interpolation to straightforwardly change or combine photon energies of the radionuclide of interest. The proposed method was evaluated for a VECTor PET-SPECT system with (i) a HE-UHR-M collimator and (ii) an EXIRAD-3D 3D autoradiography collimator. Both experimental scans with99mTc,111In, and123I, and simulated scans with67Ga and90Y were performed for evaluation. FMC was compared with two currently used approaches, one based on a set of point source measurements with99mTc (dubbed traditional method), and the other based on an energy-dependent ray-tracing simulation (ray-tracing method). The reconstruction results show better image quality when using FMC-based matrices than when applying the traditional or ray-tracing matrices in various cases. FMC-based matrices generalise better than the traditional matrices when imaging radionuclides with energies deviating too much from the energy used in the calibration and are computationally more efficient for very-high-resolution imaging than the ray-tracing matrices. In addition, FMC has the advantage of easily combining energies in a single matrix which is relevant when imaging radionuclides with multiple photopeak energies (e.g.67Ga and111In) or with a continuous energy spectrum (e.g.90Y). To conclude, FMC is an efficient, accurate, and versatile tool for creating system matrices for ultra-high-resolution pinhole SPECT.


Assuntos
Fótons , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas
5.
Phys Med Biol ; 66(6): 065006, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571975

RESUMO

In clinical brain SPECT, correction for photon attenuation in the patient is essential to obtain images which provide quantitative information on the regional activity concentration per unit volume (kBq.[Formula: see text]). This correction generally requires an attenuation map ([Formula: see text] map) denoting the attenuation coefficient at each voxel which is often derived from a CT or MRI scan. However, such an additional scan is not always available and the method may suffer from registration errors. Therefore, we propose a SPECT-only-based strategy for [Formula: see text] map estimation that we apply to a stationary multi-pinhole clinical SPECT system (G-SPECT-I) for 99mTc-HMPAO brain perfusion imaging. The method is based on the use of a convolutional neural network (CNN) and was validated with Monte Carlo simulated scans. Data acquired in list mode was used to employ the energy information of both primary and scattered photons to obtain information about the tissue attenuation as much as possible. Multiple SPECT reconstructions were performed from different energy windows over a large energy range. Locally extracted 4D SPECT patches (three spatial plus one energy dimension) were used as input for the CNN which was trained to predict the attenuation coefficient of the corresponding central voxel of the patch. Results show that Attenuation Correction using the Ground Truth [Formula: see text] maps (GT-AC) or using the CNN estimated [Formula: see text] maps (CNN-AC) achieve comparable accuracy. This was confirmed by a visual assessment as well as a quantitative comparison; the mean deviation from the GT-AC when using the CNN-AC is within 1.8% for the standardized uptake values in all brain regions. Therefore, our results indicate that a CNN-based method can be an automatic and accurate tool for SPECT attenuation correction that is independent of attenuation data from other imaging modalities or human interpretations about head contours.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Perfusão , Análise de Regressão , Tecnécio Tc 99m Exametazima , Tomografia Computadorizada por Raios X
6.
Phys Med Biol ; 65(22): 225029, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231199

RESUMO

We recently developed a dedicated focusing multi-pinhole collimator for a stationary SPECT system that offers down to 120 µm (or 1.7 nL) spatial resolution SPECT images of cryo-cooled tissue samples (EXIRAD-3D). This collimator is suitable for imaging isotopes that are often used in small animal and diagnostic SPECT such as 125I (27 keV), 201Tl (71 keV), 99mTc (140 keV), and 111In (171 and 245 keV). The goal of the present work is to develop high-resolution pinhole imaging of tissue samples containing isotopes with high-energy photon emissions, for example, therapeutic alpha and beta emitters that co-emit high energy gammas (e.g. 213Bi (440 keV) and 131I (364 keV)) or 511 keV annihilation photons from PET isotopes. To this end, we optimise and evaluate a new high energy small-bore multi-pinhole collimator through simulations. The collimator-geometry was first optimised by simulating a Derenzo phantom scan with a biologically realistic activity concentration of 18F at two system sensitivities (0.30% and 0.60%) by varying pinhole placements. Subsequently, the wall thickness was selected based on reconstructions of a Derenzo phantom and a uniform phantom. The obtained collimators were then evaluated for 131I (364 keV), 213Bi (440 keV), 64Cu (511 keV), and 124I (511 + 603 keV) with biologically realistic activity concentrations, and also for some high activity concentrations of 18F, using digital resolution, mouse knee joint, and xenograft phantoms. Our results show that placing pinhole centres at a distance of 8 mm from the collimator inner wall yields good image quality, while a wall thickness of 43 mm resulted in sufficient shielding. The collimators offer resolutions down to 0.35 mm, 0.6 mm, 0.5 mm, 0.6 mm, and 0.5 mm when imaging 131I, 213Bi, 18F, 64Cu, and 124I, respectively, contained in tissue samples at biologically achievable activity concentrations.


Assuntos
Radioisótopos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Desenho de Equipamento , Membro Posterior/diagnóstico por imagem , Camundongos , Modelos Teóricos , Imagens de Fantasmas , Fótons , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
7.
Phys Med Biol ; 65(19): 195010, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32570222

RESUMO

In recent years, breast imaging using radiolabelled molecules has attracted significant interest. Our group has proposed a multi-pinhole molecular breast tomosynthesis (MP-MBT) scanner to obtain 3D functional molecular breast images at high resolutions. After conducting extensive optimisation studies using simulations, we here present a first prototype of MP-MBT and evaluate its performance using physical phantoms. The MP-MBT design is based on two opposing gamma cameras that can image a lightly compressed pendant breast. Each gamma camera consists of a 250 × 150 mm2 detector equipped with a collimator with multiple pinholes focusing on a line. The NaI(Tl) gamma detector is a customised design with 3.5 mm intrinsic spatial resolution and high spatial linearity near the edges due to a novel light-guide geometry and the use of square PMTs. A volume-of-interest is scanned by translating the collimator and gamma detector together in a sequence that optimises count yield from the scan region. Derenzo phantom images showed that the system can reach 3.5 mm resolution for a clinically realistic 99mTc activity concentration in an 11-minute scan, while in breast phantoms the smallest spheres visible were 6 mm in diameter for the same scan time. To conclude, the experimental results of the novel MP-MBT scanner showed that the setup had sub-centimetre breast tumour detection capability which might facilitate 3D molecular breast cancer imaging in the future.


Assuntos
Mama/diagnóstico por imagem , Câmaras gama/normas , Imagens de Fantasmas , Cintilografia , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Feminino , Humanos , Compostos Radiofarmacêuticos
8.
Nucl Med Biol ; 86-87: 59-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32534896

RESUMO

INTRODUCTION: Autoradiography is an established technique for high-resolution imaging of radiolabelled molecules in biological tissue slices. Unfortunately, creating a 3D image from a set of these 2D images is extremely time-consuming and error-prone. MicroSPECT systems provide such 3D images but have a low resolution. Here we present EXIRAD-3D, a fast automated method as an alternative for 3D autoradiography from coupes based on ultra-high resolution microSPECT technology. METHODS: EXIRAD-3D uses a very small bore focusing multi-pinhole collimator mounted in a SPECT system with stationary detectors (U-SPECT/CT, MILabs B.V. The Netherlands) using a sample holder with integrated tissue cooling to avoid activity leaking or tissue deformation during the scan. The system performance was experimentally evaluated using various phantoms and tissue samples of animals in vivo injected with technetium-99m and iodine-123. RESULTS: The reconstructed spatial resolution obtained with a Derenzo hot rod phantom was 120 µm (or 1.7 nl). The voxel values of a syringe phantom image appear to be uniform and scale linearly with activity. Uptake in tiny details of the mouse knee joint, thyroid, and kidney could be clearly visualized. CONCLUSION: EXIRAD-3D opens up the possibility for fast and quantitative 3D imaging of radiolabelled molecules at a resolution far better than in vivo microSPECT and saves tremendous amounts of work compared to obtaining 3D data from a set of 2D autoradiographs. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: EXIRAD-3D offers superior image resolution over microSPECT, and it can be a very efficient alternative for autoradiography in pharmaceutical and biological studies.


Assuntos
Autorradiografia/métodos , Automação , Autorradiografia/instrumentação , Humanos , Radioisótopos do Iodo , Razão Sinal-Ruído , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tecnécio , Fatores de Tempo
9.
Phys Med Biol ; 65(10): 105014, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32208374

RESUMO

Today, versatile emission computed tomography (VECTor) technology using dedicated high-energy collimation enables simultaneous positron emission tomography (PET) and single photon emission computed tomography (SPECT) down to 0.6 mm and 0.4 mm resolution in mice, respectively. We recently showed that for optimal resolution and quantitative accuracy of PET images the long tails of the 511 keV point spread functions (PSFs) need to be fully modelled during image reconstruction. This, however, leads to very time consuming reconstructions and thus significant acceleration in reconstruction speed is highly desirable. To this end we propose and validate a combined dual-matrix dual-voxel (DM-DV) approach: for the forward projection the slowly varying PSF tails are modelled on a three times rougher voxel grid than the central parts of the PSFs, while in the backprojection only parts of the PSF tails are included. DM-DV reconstruction is implemented in pixel-based ordered subsets expectation maximization (POSEM) and in a recently proposed accelerated pixel-based similarity-regulated ordered subsets expectation maximization (SROSEM). Both a visual assessment and a quantitative contrast-noise analysis confirm that images of a hot-rod phantom are practically identical when reconstructed with standard POSEM, DM-DV-POSEM or DM-DV-SROSEM. However, compared to POSEM, DM-DV-POSEM can reach the same contrast 5.0 times faster, while with DM-DV-SROSEM this acceleration factor increases to 11.5. Furthermore, mouse cardiac and bone images reconstructed with DM-DV-SROSEM are visually almost indistinguishable from POSEM reconstructed images but typically need an order of magnitude less reconstruction time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Osso e Ossos/diagnóstico por imagem , Coração/diagnóstico por imagem , Camundongos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único
10.
Phys Med Biol ; 65(1): 015002, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31770743

RESUMO

Brain perfusion SPECT can be used in the diagnosis of various neurologic or psychiatric disorders, e.g. stroke, epilepsy, dementia and posttraumatic stress disorder. As traditional SPECT provides limited resolution and sensitivity, we recently proposed a high resolution focusing multi-pinhole clinical SPECT scanner dubbed G-SPECT-I (Beekman et al 2015, Eur. J. Nucl. Med. Mol. Imaging 42 S209). G-SPECT-I achieves data completeness in the scan region of interest (ROI) by making small translations of the patient bed while using projections from all bed positions together for image reconstruction. A strategy to restrict the number of bed translations is desired to minimize overhead time. Previously we presented optimized bed translation paths for focused partial brain imaging, while here we focus on whole brain imaging which is the common procedure in perfusion studies. Thus, a series of noise-free scans using a reduced number of bed positions were simulated and compared to an oversampled reference scan acquired with 128 bed positions. Noisy simulations were included to validate the utility of the optimized sequences in more realistic situations. Brain uptake ratios (BURs) and left-right Asymmetry Indices (AIs) in 51 selected regions of interest (ROIs) were calculated for assessment. Results show that images were barely affected by decreasing the number of bed positions from 128 down to 18 (mean deviation from the reference of only 2.2% and 1.5% for the BUR and AI, respectively) while slightly larger deviations (2.9% and 2.7%, respectively) were obtained when using 12 positions. For both 18- and 12-position sequences these deviations due to sampling were much smaller than those induced by noise (mean deviation of 6.5% and 8.6%, respectively). Given an associated total overhead for bed movement of half a minute (18 positions) or 20 s (12 positions), G-SPECT-I can be a clinical platform that brings new protocols for fast (dynamic) whole brain SPECT and motion correction into reach.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Manejo de Espécimes/normas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Algoritmos , Humanos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
11.
Phys Med Biol ; 64(10): 105017, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30947156

RESUMO

Pinhole collimation is widely recognized for offering superior resolution-sensitivity trade-off in SPECT imaging of small subjects. The newly developed EXIRAD-3D autoradiography technique (MILabs B.V.) based on a highly focusing multi-pinhole collimator achieves micron-resolution SPECT for cryo-cooled tissue samples. For such high resolutions, the choice of pinhole material may have a significant impact on images. Therefore, this paper aims to compare the performance of EXIRAD-3D with lead, tungsten, gold, and depleted uranium pinhole collimators designed such that they achieve equal sensitivities. Performance in terms of resolution is characterized for several radioisotopes, namely 111In (171 keV and 245 keV), 99mTc (140 keV), 201Tl (71 keV), and 125I (27 keV). Using Monte Carlo simulation, point spread functions were generated and their profiles as well as their full-width-at-half-maximum and full-width-at-tenth-maximum were determined and evaluated for different materials and isotopes. Additionally, simulated reconstructions of a Derenzo resolution phantom, validated with experimental data, were judged by assessment of the resolvable rods as well as a contrast-to-noise ratio (CNR) analysis. Our results indicate that using materials with higher photon-stopping power yields images with better CNR for the studied isotopes with improvements ranging from 1.9% to 36.6%. Visual assessment on the reconstructed images suggests that for EXIRAD-3D, the tungsten collimator is generally a good choice for a wide range of SPECT isotopes. For relatively high-energy isotopes such as 111In, using gold inserts can be beneficial.


Assuntos
Ouro/química , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tungstênio/química , Humanos , Radioisótopos de Índio/análise , Radioisótopos do Iodo/análise , Método de Monte Carlo , Radioisótopos de Tálio/análise
12.
Phys Med Biol ; 63(22): 225002, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30403197

RESUMO

SPECT can be used to image dopamine transporter (DaT) availability in the human striatum, e.g. for diagnosis of Parkinson's disease (PD). As traditional SPECT provides limited resolution and sensitivity, we proposed a full ring focusing multi-pinhole SPECT system (G-SPECT-I (Beekman 2015 Eur. J. Nucl. Med. Mol. Imaging 42 S209)) which demonstrated a 2.5 mm reconstructed resolution in phantom scans. G-SPECT-I achieves data completeness in the scan region of interest by translating the patient bed with an xyz-stage and combining projections from all bed positions into image reconstruction using a scanning focus method (SFM). This paper aims to develop dedicated SFM parameters for performing a DaTscan with high effective sensitivity and appropriate sampling. To this end, the axial scanning length was restricted and transaxial bed trajectories with a reduced number of positions based on a convex hull data-completeness model were tested. Quantitative accuracy was assessed using full G-SPECT-I simulations of an Alderson phantom based on measured system matrices. For each sampling strategy, the specific binding ratio (SBR) and asymmetry index (AI) in the left and right striatum, as well as the Localized SBR (L-SBR) and the Localized AI (L-AI) in eight striatal sub-regions were calculated and compared to those of the reference scan which performs full brain oversampling using 112 bed positions. Results show that structures essential for PD diagnosis were visually and quantitatively barely affected even when using the lowest number of bed translations (i.e. 4). The maximum deviation from the reference was only 1.5%, 1.5%, 5.5% and 7.0% for the SBR, AI, L-SBR and L-AI, respectively, when 4 positions were used. Thus, it is possible to perform an accurate DaTscan with a confined axial scan region and a limited number of focused bed positions. This enables protocols for extremely fast dynamic SPECT scans with less than half-minute time frames, which can be useful for motion correction.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Limite de Detecção , Neostriado/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/normas
13.
Phys Med ; 48: 84-90, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29728234

RESUMO

Anger cameras based on monolithic NaI scintillators read out by an array of PMTs are predominant in planar gamma imaging and SPECT. However, position estimation of gamma interactions is usually severely degraded near the edges of the scintillator which can be extremely undesirable for applications like breast imaging. Here we propose a relatively cost-effective solution based on the use of scintillators with absorptive edges with an unconventional light-guide-PMT layout employing a maximum likelihood positioning algorithm. The basic design on which we aim to improve consists of a monolithic NaI(Tl) scintillator read out by 3 × 5 square PMTs (conventional layout, CL) that could be suitable for molecular breast imaging. To better detect gamma interactions near the crystal's critical edge, we tried different set-ups: we replaced the 5 large PMTs near the edge by 11 smaller PMTs (small-sensor layout, SSL); we emulated rectangular PMTs along the critical edge by inserting a row of 5 rectangular light-guides that direct the light toward square PMTs placed behind (shifted layout, SL); we inserted rectangular light-guides alternatingly, such that the PMTs are in an interlocking pattern (alternating shifted layout, ASL). The performance of our designs was tested with Monte Carlo simulations. Results showed that SSL, SL, and ASL gave better spatial resolution near the critical edge than CL (3.4, 3.6, and 4.1 mm near the edge compared with 5.3 mm for CL), and thus resulted in a larger usable detector area. To conclude, for applications where small dead edges are crucial, our designs may be cost-effective solutions.


Assuntos
Luz , Contagem de Cintilação/instrumentação , Câmaras gama
14.
Phys Med Biol ; 63(10): 105009, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29676285

RESUMO

Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6-8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7-10 mm range.


Assuntos
Mama/diagnóstico por imagem , Imagens de Fantasmas , Cintilografia , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Feminino , Câmaras gama , Humanos , Razão Sinal-Ruído , Tomografia Computadorizada de Emissão de Fóton Único/normas
15.
Phys Med Biol ; 63(1): 015018, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28994663

RESUMO

Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.


Assuntos
Neoplasias da Mama/parasitologia , Imagens de Fantasmas , Cintilografia , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/normas , Neoplasias da Mama/diagnóstico por imagem , Feminino , Câmaras gama , Humanos , Razão Sinal-Ruído , Tomografia Computadorizada de Emissão de Fóton Único/métodos
16.
Phys Med Biol ; 62(10): N228-N243, 2017 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-28445165

RESUMO

Accurate analytical expressions for collimator resolution and sensitivity are important tools in the optimization of SPECT systems. However, presently known expressions for the sensitivity of converging collimators either diverge near the focal point or focal line(s), or are only valid on the collimator axis. As a result, these expressions are unsuitable to calculate volumetric sensitivity for e.g. short-focal length collimators that focus inside the object to enhance sensitivity. To also enable collimator optimization for these geometries, we here present non-diverging sensitivity formulas for astigmatic, cone beam and fan beam collimators that are applicable over the full collimator's field-of-view. The sensitivity was calculated by integrating previously derived collimator response functions over the full detector surface. Contrary to common approximations, the varying solid angle subtended by different detector pixels was fully taken into account which results in a closed-form non-diverging formula for the sensitivity. We validated these expressions using ray-tracing simulations of a fan beam and an astigmatic cone beam collimator and found close agreement between the simulations and the sensitivity expression. The largest differences with the simulation were found close to the collimator, where sensitivity depends on the exact placement of holes and septa, while our expression represents an average over all possible placements as is common practice for analytical sensitivity expressions. We checked that average differences between the analytical expression and simulations reduced to less than 1% of the maximum sensitivity when we averaged our simulations over different septa locations. Moreover, we found that our new expression reduced to the traditional diverging formula under certain assumptions. Therefore, the newly derived sensitivity expression may enable the optimization of converging collimators for a wide range of applications, in particular when the focus is close to, or in, the object of interest.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Desenho de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Razão Sinal-Ruído
17.
Phys Med Biol ; 61(15): 5508-28, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384301

RESUMO

Planar molecular breast imaging (MBI) is rapidly gaining in popularity in diagnostic oncology. To add 3D capabilities, we introduce a novel molecular breast tomosynthesis (MBT) scanner concept based on multi-pinhole collimation. In our design, the patient lies prone with the pendant breast lightly compressed between transparent plates. Integrated webcams view the breast through these plates and allow the operator to designate the scan volume (e.g. a whole breast or a suspected region). The breast is then scanned by translating focusing multi-pinhole plates and NaI(Tl) gamma detectors together in a sequence that optimizes count yield from the volume-of-interest. With simulations, we compared MBT with existing planar MBI. In a breast phantom containing different lesions, MBT improved tumour-to-background contrast-to-noise ratio (CNR) over planar MBI by 12% and 111% for 4.0 and 6.0 mm lesions respectively in case of whole breast scanning. For the same lesions, much larger CNR improvements of 92% and 241% over planar MBI were found in a scan that focused on a breast region containing several lesions. MBT resolved 3.0 mm rods in a Derenzo resolution phantom in the transverse plane compared to 2.5 mm rods distinguished by planar MBI. While planar MBI cannot provide depth information, MBT offered 4.0 mm depth resolution. Our simulations indicate that besides offering 3D localization of increased tracer uptake, multi-pinhole MBT can significantly increase tumour-to-background CNR compared to planar MBI. These properties could be promising for better estimating the position, extend and shape of lesions and distinguishing between single and multiple lesions.


Assuntos
Mama/diagnóstico por imagem , Câmaras gama , Cintilografia/instrumentação , Humanos , Imagens de Fantasmas
18.
Nucl Med Biol ; 43(8): 506-11, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27289328

RESUMO

INTRODUCTION: High-resolution pre-clinical (131)I SPECT can facilitate development of new radioiodine therapies for cancer. To this end, it is important to limit resolution-degrading effects of pinhole edge penetration by the high-energy γ-photons of iodine. Here we introduce, optimize and validate (131)I SPECT performed with a dedicated high-energy clustered multi-pinhole collimator. METHODS: A SPECT-CT system (VECTor/CT) with stationary gamma-detectors was equipped with a tungsten collimator with clustered pinholes. Images were reconstructed with pixel-based OSEM, using a dedicated (131)I system matrix that models the distance- and energy-dependent resolution and sensitivity of each pinhole, as well as the intrinsic detector blurring and variable depth of interaction in the detector. The system performance was characterized with phantoms and in vivo static and dynamic (131)I-NaI scans of mice. RESULTS: Reconstructed image resolution reached 0.6mm, while quantitative accuracy measured with a (131)I filled syringe reaches an accuracy of +3.6±3.5% of the gold standard value. In vivo mice scans illustrated a clear shape of the thyroid and biodistribution of (131)I within the animal. Pharmacokinetics of (131)I was assessed with 15-s time frames from the sequence of dynamic images and time-activity curves of (131)I-NaI. CONCLUSIONS: High-resolution quantitative and fast dynamic (131)I SPECT in mice is possible by means of a high-energy collimator and optimized system modeling. This enables analysis of (131)I uptake even within small organs in mice, which can be highly valuable for development and optimization of targeted cancer therapies.


Assuntos
Radioisótopos do Iodo , Razão Sinal-Ruído , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Iodeto de Sódio/farmacocinética , Distribuição Tecidual
19.
Phys Med Biol ; 61(10): 3712-33, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27082049

RESUMO

The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning (99m)Tc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes ('multiple-pinhole paths' (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging (18)F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Calibragem , Raios gama , Camundongos , Imagens de Fantasmas , Fótons , Razão Sinal-Ruído , Software , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/normas
20.
J Nucl Med ; 57(3): 486-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635343

RESUMO

UNLABELLED: The combined α-, γ-, and x-ray emitter (213)Bi (half-life, 46 min) is promising for radionuclide therapy. SPECT imaging of (213)Bi is challenging, because most emitted photons have a much higher energy (440 keV) than common in SPECT. We assessed (213)Bi imaging capabilities of the Versatile Emission Computed Tomograph (VECTor) dedicated to (simultaneous) preclinical imaging of both SPECT and PET isotopes over a wide photon energy range of 25-600 keV. METHODS: VECTor was equipped with a dedicated clustered pinhole collimator. Both the 79 keV x-rays and the 440 keV γ-rays emitted by (213)Bi could be imaged. Phantom experiments were performed to determine the maximum resolution, contrast-to-noise ratio, and activity recovery coefficient for different energy window settings. Additionally, imaging of [(213)Bi-DOTA,Tyr(3)]octreotate and (213)Bi-diethylene triamine pentaacetic acid (DTPA) in mouse models was performed. RESULTS: Using 440 keV γ-rays instead of 79 keV x-rays in image reconstruction strongly improved the resolution (0.75 mm) and contrast-to-noise characteristics. Results obtained with a single 440 keV energy window setting were close to those with a combined 79 keV/440 keV window. We found a reliable activity recovery coefficient down to 0.240 MBq/mL with 30-min imaging time. In a tumor-bearing mouse injected with 3 MBq of [(213)Bi-DOTA,Tyr(3)]octreotate, tumor uptake could be visualized with a 1-h postmortem scan. Imaging a nontumor mouse at 5-min frames after injection of 7.4 MBq of (213)Bi-DTPA showed renal uptake and urinary clearance, visualizing the renal excretion pathway from cortex to ureter. Quantification of the uptake data allowed kinetic modeling and estimation of the absorbed dose to the kidneys. CONCLUSION: It is feasible to image (213)Bi down to a 0.75-mm resolution using a SPECT system equipped with a dedicated collimator.


Assuntos
Bismuto , Radioisótopos , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Animais , Feminino , Raios gama , Compostos Heterocíclicos com 1 Anel , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/diagnóstico por imagem , Octreotida/análogos & derivados , Compostos Organometálicos , Imagens de Fantasmas , Fótons , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...