Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 12(8): e1005063, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551746

RESUMO

The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in two different conditions: static (control) and fluid shear stress. The proposed methodology exhibited higher sensitivity values and similar accuracy compared to state-of-the-art methods.


Assuntos
Actinas/análise , Actinas/química , Citoesqueleto/química , Processamento de Imagem Assistida por Computador/métodos , Actinas/metabolismo , Algoritmos , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Camundongos , Microscopia de Fluorescência , Estresse Mecânico
2.
mBio ; 6(2)2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25873380

RESUMO

UNLABELLED: We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca(2+) takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca(2+). These results unify the generally accepted lectin hypothesis with the historically first-proposed "Ca(2+)-bridge" hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. IMPORTANCE: Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.


Assuntos
Adesão Celular , Conjugação Genética , Floculação , Lectinas de Ligação a Manose/metabolismo , Viabilidade Microbiana , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Perfilação da Expressão Gênica , Lectinas de Ligação a Manose/química , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/análise , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de DNA
3.
Biotechnol Lett ; 35(6): 891-900, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23417260

RESUMO

Genomics, transcriptomics, proteomics and fluxomics are powerful omics-technologies that play a major role in today's research. For each of these techniques good sample quality is crucial. Major factors contributing to the quality of a sample is the actual sampling procedure itself and the way the sample is stored directly after sampling. It has already been described that RNAlater can be used to store tissues and cells in a way that the RNA quality and quantity are preserved. In this paper, we demonstrate that quaternary ammonium salts (RNAlater) are also suitable to preserve and store samples from Saccharomyces cerevisiae for later use with the four major omics-technologies. Moreover, it is shown that RNAlater also preserves the cell morphology and the potential to recover growth, permitting microscopic analysis and yeast cell culturing at a later stage.


Assuntos
Preservação Biológica/métodos , Compostos de Amônio Quaternário/metabolismo , Manejo de Espécimes/métodos , Saccharomyces cerevisiae/efeitos dos fármacos
4.
Protein Expr Purif ; 88(1): 114-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23247087

RESUMO

Saccharomyces cerevisiae flocculation is governed by FLO genes, encoding Flo proteins (flocculins). Flo proteins are cell wall proteins consisting of three domains, sticking out of the cell wall and interacting with other yeast cells using their N-terminal mannose-binding domain. Until recently, flocculation research was focused on the genetic and cellular level. To extend the knowledge about flocculation to the protein level, we isolated the N-terminal domain of the Flo1p (N-Flo1p) that contains the mannose-binding domain, which is responsible for the strong interaction (flocculation) of S. cerevisiae cells. To obtain a high production yield and a more uniform and lower glycosylation of N-Flo1p, it was cloned in Pichia pastoris. The expression and the purification of N-Flo1p were optimised towards a one-step purification protocol. The activity of the protein, i.e. the binding of the purified protein to mannose using fluorescence spectroscopy, was demonstrated.


Assuntos
Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/genética , Clonagem Molecular , Floculação , Glicosilação , Manose/metabolismo , Lectinas de Ligação a Manose/biossíntese , Pichia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/biossíntese , Espectrometria de Fluorescência
5.
FEMS Yeast Res ; 12(1): 78-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22129043

RESUMO

The expression of the Flo11 flocculin in Saccharomyces cerevisiae offers the cell a wide range of phenotypes, depending on the strain and the environmental conditions. The most important are pseudohyphae development, invasive growth and flocculation. The mechanism of cellular adhesion mediated by Flo11p is not well understood. Therefore, the N-terminal domain of Flo11p was purified and studied. Although its amino acid sequence shows less similarity with the other flocculins, Flo11p belongs to the flocculin family. However, the N-terminal domain contains the 'Flo11-domain' (PF10181), but not the mannose-binding PA14 domain, which is present in the other flocculins (Flo1p, Flo5p, Flo9p and Flo10p). Structural and binding properties of the N-terminal domain of Flo11p were studied. It is shown that this domain is O-glycosylated and is structurally composed mainly of ß-sheets, which is typical for the members of the flocculin family. Furthermore, fluorescence spectroscopy binding studies revealed that N-Flo11p does not bind mannose, which is in contrast to the other Flo proteins. However, surface plasmon resonance analysis showed that N-Flo11p self-interacts and explains the cell-cell interaction capacity of FLO11-expressing cells.


Assuntos
Adesão Celular , Manose/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Glicosilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Análise Espectral , Ressonância de Plasmônio de Superfície
6.
Mol Microbiol ; 80(6): 1667-79, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21585565

RESUMO

The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.


Assuntos
Candida albicans/metabolismo , Fucose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Candida albicans/química , Candida albicans/genética , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
7.
Eukaryot Cell ; 10(1): 110-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076009

RESUMO

Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of ß-sheets. The binding of N-Flo1p to D-mannose, α-methyl-D-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level.


Assuntos
Mananas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manose/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Floculação , Glicosilação , Lectinas de Ligação a Manose/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Fluorescência , Titulometria
8.
Biotechnol Lett ; 32(11): 1571-85, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20640875

RESUMO

Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interaction but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.


Assuntos
Adesão Celular , Floculação , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...