Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35230973

RESUMO

The current strategy to detect acute injury of kidney tubular cells relies on changes in serum levels of creatinine. Yet serum creatinine (sCr) is a marker of both functional and pathological processes and does not adequately assay tubular injury. In addition, sCr may require days to reach diagnostic thresholds, yet tubular cells respond with programs of damage and repair within minutes or hours. To detect acute responses to clinically relevant stimuli, we created mice expressing Rosa26-floxed-stop uracil phosphoribosyltransferase (Uprt) and inoculated 4-thiouracil (4-TU) to tag nascent RNA at selected time points. Cre-driven 4-TU-tagged RNA was isolated from intact kidneys and demonstrated that volume depletion and ischemia induced different genetic programs in collecting ducts and intercalated cells. Even lineage-related cell types expressed different genes in response to the 2 stressors. TU tagging also demonstrated the transient nature of the responses. Because we placed Uprt in the ubiquitously active Rosa26 locus, nascent RNAs from many cell types can be tagged in vivo and their roles interrogated under various conditions. In short, 4-TU labeling identifies stimulus-specific, cell-specific, and time-dependent acute responses that are otherwise difficult to detect with other technologies and are entirely obscured when sCr is the sole metric of kidney damage.


Assuntos
Injúria Renal Aguda , RNA , Animais , Perfilação da Expressão Gênica , Camundongos , RNA/metabolismo
2.
Kidney Int Rep ; 5(11): 1982-1992, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163719

RESUMO

INTRODUCTION: The identification of acute injury of the kidney relies on serum creatinine (SCr), a functional marker with poor temporal resolution as well as limited sensitivity and specificity for cellular injury. In contrast, urinary biomarkers of kidney injury have the potential to detect cellular stress and damage in real time. METHODS: To detect the response of the kidney to injury, we have tested a lateral flow dipstick that measures a urinary protein called neutrophil gelatinase-associated lipocalin (NGAL). Analysis of urine was performed in a prospective cohort of 479 patients (final cohort N = 426) entering an emergency department in New York City and subsequently admitted for inpatient care. RESULTS: Colorimetric development had high interrater reliability (88% concordance rate) and correlated with traditional enzyme-linked immunosorbent assay (ELISA) measurements (ρ = 0.732, P < .0001). Of the 14% of the cohort who met Acute Kidney Injury Network (AKIN) SCr criteria for acute kidney injury (AKI), 67% demonstrated transient (<2 days) and 33% demonstrated sustained (>2 days) elevation of SCr. Comparing the outcomes of patients with sustained versus transient or undetectable changes in SCr revealed that the urinary NGAL (uNGAL) dipstick had high specificity and negative predictive value (NPV) (high- vs. low-intermediate readings, sensitivity = 0.55, specificity = 0.91, positive predictive value = 0.24, NPV = 0.97, χ2 = 20.39, P < 0.001). CONCLUSION: We show that the introduction of a bedside uNGAL dipstick permits accurate triage by identifying individuals who do not have tubular injury. In an era of shortening length of stay and rapid decisions based on isolated SCr measurements, real-time exclusion of kidney injury by a dipstick will be particularly useful to overcome the retrospective, insensitive, and nonspecific attributes of SCr.

3.
J Am Soc Nephrol ; 28(6): 1729-1740, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28028135

RESUMO

Two metrics, a rise in serum creatinine concentration and a decrease in urine output, are considered tantamount to the injury of the kidney tubule and the epithelial cells thereof (AKI). Yet neither criterion emphasizes the etiology or the pathogenetic heterogeneity of acute decreases in kidney excretory function. In fact, whether decreased excretory function due to contraction of the extracellular fluid volume (vAKI) or due to intrinsic kidney injury (iAKI) actually share pathogenesis and should be aggregated in the same diagnostic group remains an open question. To examine this possibility, we created mouse models of iAKI and vAKI that induced a similar increase in serum creatinine concentration. Using laser microdissection to isolate specific domains of the kidney, followed by RNA sequencing, we found that thousands of genes responded specifically to iAKI or to vAKI, but very few responded to both stimuli. In fact, the activated gene sets comprised different, functionally unrelated signal transduction pathways and were expressed in different regions of the kidney. Moreover, we identified distinctive gene expression patterns in human urine as potential biomarkers of either iAKI or vAKI, but not both. Hence, iAKI and vAKI are biologically unrelated, suggesting that molecular analysis should clarify our current definitions of acute changes in kidney excretory function.


Assuntos
Injúria Renal Aguda/classificação , Injúria Renal Aguda/genética , Transcriptoma , Animais , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...