Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35483790

RESUMO

Xeroderma pigmentosum D (XPD) protein plays a pivotal role in the nucleotide excision repair pathway. XPD unwinds the local area of the damaged DNA by virtue of constituting transcription factor II H (TFIIH) and is important not only for repair but also for basal transcription. Although cells deficient in XPD have shown to be defective in oxidative base-lesion repair, the effects of the oxidative assault on primary fibroblasts from patients suffering from Xeroderma Pigmentosum D have not been fully explored. Therefore, we sought to investigate the role of XPD in oxidative DNA damage-repair by treating primary fibroblasts derived from a patient suffering from Xeroderma Pigmentosum D, with hydrogen peroxide. Our results show dose-dependent increase in genotoxicity with minimal effect on cytotoxicity with H2O2 in XPD deficient cells compared to control cells. XPD deficient cells displayed increased susceptibility and reduced repair capacity when subjected to DNA damage induced by oxidative stress. XPD deficient fibroblasts exhibited increased telomeric loss after H2O2 treatment. In addition, we demonstrated that chronic oxidative stress induced accelerated premature senescence characteristics. Gene expression profiling revealed alterations in genes involved in transcription and nucleotide metabolisms, as well as in cellular and cell cycle processes in a more significant way than in other pathways. This study highlights the role of XPD in the repair of oxidative stress and telomere maintenance. Lack of functional XPD seems to increase the susceptibility of oxidative stress-induced genotoxicity while retaining cell viability posing as a potential cancer risk factor of Xeroderma Pigmentosum D patients.


Assuntos
Xeroderma Pigmentoso , Reparo do DNA , Humanos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
2.
Sci Rep ; 10(1): 7067, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341500

RESUMO

Phthalates are commonly included as ingredients in personal care products such as cosmetics, shampoos and perfumes. Diethyl phthalate (DEP) has been found to be anti-androgenic and linked with adverse reproductive effects on males, but effects on females are poorly understood. We designed an integrative and translational study to experimentally examine the effects of DEP exposure at a human-equivalent dose on the mammary transcriptome in rats and to subsequently examine the DEP gene signature in breast tissues (both pre-malignant and tumor) from a population study. In Sprague-Dawley rats treated orally with DEP from birth to adulthood, we identified a signature panel of 107 genes predominantly down-regulated by DEP exposure. Univariate analysis of this 107 DEP gene signature in pre-malignant breast tissues revealed that six genes (P4HA1, MPZL3, TMC4, PLEKHA6, CA8, AREG) were inversely associated with monoethyl phthalate (MEP; the urinary metabolite of DEP) concentration (p < 0.05) among postmenopausal women; all six genes loaded on to one of seven factors identified by factor analysis. Transcription factor enrichment analysis revealed that genes in this factor were enriched for androgen receptor binding sites. These six genes were also significantly down-regulated in pre-malignant adjacent tissues compared to the corresponding tumor tissues in pair-wise analyses (p < 0.05). Results from our translational study indicate that low level exposure to diethyl phthalate results in measurable genomic changes in breast tissue with implications in breast carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ácidos Ftálicos/toxicidade , Idoso , Anfirregulina/genética , Anfirregulina/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/induzido quimicamente , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ratos Sprague-Dawley
3.
Endocr Relat Cancer ; 26(12): 843-851, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31593922

RESUMO

Environmental phenols and phthalates are common ingredients in personal care products and some have been implicated in breast cancer progression. We have previously identified genes differentially expressed in response to low-dose exposure to diethyl phthalate (DEP) and methyl paraben (MPB) in a rat model. Herein we explore if these genes are associated with breast cancer mortality in humans. We profiled MPB- and DEP-responsive genes in tumors by NanoString® from a population-based cohort of 606 women with first primary breast cancer among whom 119 breast cancer-specific deaths occurred within 15+ years of follow-up. For each gene, Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results were validated in two publicly available datasets. The following results were obtained. From 107 DEP- and 77 MPB-responsive genes profiled, 44 and 30 genes, respectively, were significantly associated with breast cancer-specific mortality. Some top DEP-responsive genes are novel for breast cancer mortality, such as ABHD14B (for high-vs-low expression, HR 0.36, 95% CI: 0.2-0.5) and TMC4 (HR 0.37, 95% CI: 0.3-0.5); top hits for MPB (SLC40A1 (HR 0.37, 95% CI: 0.3-0.5) and NTN4 (HR 0.39, 95% CI: 0.3-0.6)) are well-known predictors of breast cancer survival. PLEKHA6 was another novel survival predictor, sensitive to hormonal receptor status (HR 0.5, 95% CI 0.3-0.9 for hormonal receptor-positive and HR 3.2, 95% CI 1.7-6.2 for -negative group). In conclusion, tumor expression of DEP- and MPB-responsive genes is associated with breast cancer mortality, supporting that exposure to these chemicals may influence the progression of breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Poluentes Ambientais , Parabenos , Ácidos Ftálicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Transcriptoma
4.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 103-113, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30442335

RESUMO

The mTOR pathway and the enzyme telomerase are two key players commonly upregulated in cancers. They render survival and proliferative advantage to cancer cells, and are regarded as attractive anticancer targets. Rapamycin, a macrolide antibiotic and mTOR inhibitor, has recently also been implicated in telomerase inhibition and telomere attrition, although the mechanisms remain poorly understood. Using breast cancer cells (MCF-7 and MDA-MB-231) wherein telomerase activity and mTOR pathway are concurrently overexpressed, this study sought to unravel novel mechanisms by which rapamycin may affect these pathways. Short term treatment with an acute dose of rapamycin inhibited the mTOR pathway and telomerase activity and induced G1 arrest. This arrest was independent of cyclin D1 and p21 levels and was not mediated by DNA damage in both cell types. While long term treatment with a clinically relevant dose of rapamycin resulted in compromised population doubling capacity and mTOR pathway inhibition, there was no effect on telomere functionality and telomerase activity as evidenced by our assessments of hTERT protein levels, in vitro telomerase activity, telomere length and telomere FISH analyses. We also found that sustained rapamycin treatment leading to Akt activation may play a role in resistance in the more invasive MDA-MB-231 cells. In summary, rapamycin specifically inhibits the activation of mTOR pathway. Moreover, we show for the first time that while acute short-term treatment with rapamycin induces telomerase inhibition, it does not affect telomerase activity nor does it inflict telomere dysfunction in breast cancer cells upon chronic long-term treatment with a clinically relevant dose. These findings may be useful while designing combinatorial treatment strategies with rapamycin inhibition in the clinic.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Telomerase/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Dano ao DNA , Feminino , Humanos , Homeostase do Telômero , Células Tumorais Cultivadas
5.
J Mammary Gland Biol Neoplasia ; 23(3): 149-163, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29956080

RESUMO

Breast development occurs through well-defined stages representing 'windows of susceptibility' to adverse environmental exposures that potentially modify breast cancer risk. Systematic characterization of morphology and transcriptome during normal breast development lays the foundation of our understanding of cancer etiology. We examined mammary glands in female Sprague Dawley rats across six developmental stages - pre-pubertal, peri-pubertal, pubertal, lactation, adult parous and adult nulliparous. We investigated histology by Hematoxylin and Eosin and Mallory's Trichrome stain, proliferative and apoptotic rate by immunohistochemistry and whole-transcriptome by microarrays. We identified differentially expressed genes between adjacent developmental stages by linear models, underlying pathways by gene ontology analysis and gene networks and hubs active across developmental stages by coexpression network analysis. Mammary gland development was associated with large-scale changes in the transcriptome; particularly from pre-pubertal to peri-pubertal period and the lactation period were characterized by distinct patterns of gene expression with unique biological functions such as immune processes during pre-pubertal development and cholesterol biosynthesis during lactation. These changes were reflective of the shift in mammary gland histology, from a rudimentary organ during early stages to a secretory organ during lactation followed by regression with age. Hub genes within mammary gene networks included metabolic genes such as Pparg during the pre-pubertal stage and tight junction-related genes claudins and occludins in lactating mammary glands. Transcriptome profile paired with histology enhanced our understanding of mammary development, which is fundamental in understanding the etiologic mechanism of breast cancer, especially pertaining to windows of susceptibility to environmental exposures that may alter breast cancer risk.


Assuntos
Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Transcriptoma/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Claudinas/genética , Feminino , Perfilação da Expressão Gênica/métodos , Lactação/genética , Ocludina/genética , Ratos , Ratos Sprague-Dawley , Junções Íntimas/genética
6.
Clin Cancer Res ; 24(3): 581-591, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138345

RESUMO

Purpose: Breast cancer is among the leading causes of cancer-related death; discovery of novel prognostic markers is needed to improve outcomes. Combining systems biology and epidemiology, we investigated miRNA-associated genes and breast cancer survival in a well-characterized population-based study.Experimental Design: A recently developed algorithm, ActMiR, was used to identify key miRNA "activities" corresponding to target gene degradation, which were predictive of breast cancer mortality in published databases. We profiled miRNA-associated genes in tumors from our well-characterized population-based cohort of 606 women with first primary breast cancer. Cox proportional hazards models were used to estimate HRs and 95% confidence intervals (CI), after 15+ years of follow-up with 119 breast cancer-specific deaths.Results: miR-500a activity was identified as a key miRNA for estrogen receptor-positive breast cancer mortality using public databases. From a panel of 161 miR-500a-associated genes profiled, 73 were significantly associated with breast cancer-specific mortality (FDR < 0.05) in our population, among which two clusters were observed to have opposing directions of association. For example, high level of SUSD3 was associated with reduced breast cancer-specific mortality (HR = 0.3; 95% CI, 0.2-0.4), whereas the opposite was observed for TPX2 (HR = 2.7; 95% CI, 1.8-3.9). Most importantly, we identified set of genes for which associations with breast cancer-specific mortality were independent of known prognostic factors, including hormone receptor status and PAM50-derived risk-of-recurrence scores. These results are validated in independent datasets.Conclusions: We identified novel markers that may improve prognostic efficiency while shedding light on molecular mechanisms of breast cancer progression. Clin Cancer Res; 24(3); 581-91. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , MicroRNAs/genética , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Curva ROC , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Transcriptoma
7.
Bioinformatics ; 33(14): i199-i207, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28881990

RESUMO

MOTIVATION: Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures. We will use data from an animal experiment designed to investigate the effect of low-dose environmental chemical exposure on normal mammary gland development in rats to motivate and evaluate the proposed method. RESULTS: We propose a new network approach-integrative Joint Random Forest (iJRF), which characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is designed to work under the high-dimension low-sample-size regime, and can borrow information across different treatment conditions to achieve more accurate network inference. It also effectively takes into account prior information of miRNA-mRNA regulatory relationships from existing databases. When iJRF is applied to the data from the environmental chemical exposure study, we detected a few important miRNAs that regulated a large number of mRNAs in the control group but not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure. Effects of chemical exposure on two affected miRNAs were further validated using breast cancer human cell lines. AVAILABILITY AND IMPLEMENTATION: R package iJRF is available at CRAN. CONTACTS: pei.wang@mssm.edu or susan.teitelbaum@mssm.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Exposição Ambiental , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Software , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Modelos Biológicos , RNA Mensageiro/genética , Ratos , Tamanho da Amostra , Transcriptoma
8.
Environ Res ; 152: 233-243, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810681

RESUMO

Exposure to environmental chemicals has been linked to altered mammary development and cancer risk at high doses using animal models. Effects at low doses comparable to human exposure remain poorly understood, especially during critical developmental windows. We investigated the effects of two environmental phenols commonly used in personal care products - methyl paraben (MPB) and triclosan (TCS) - on the histology and transcriptome of normal mammary glands at low doses mimicking human exposure during critical windows of development. Sprague-Dawley rats were exposed during perinatal, prepubertal and pubertal windows, as well as from birth to lactation. Low-dose exposure to MPB and TCS induced measurable changes in both mammary histology (by Masson's Trichrome Stain) and transcriptome (by microarrays) in a window-specific fashion. Puberty represented a window of heightened sensitivity to MPB, with increased glandular tissue and changes of expression in 295 genes with significant enrichment in functions such as DNA replication and cell cycle regulation. Long-term exposure to TCS from birth to lactation was associated with increased adipose and reduced glandular and secretory tissue, with expression alterations in 993 genes enriched in pathways such as cholesterol synthesis and adipogenesis. Finally, enrichment analyses revealed that genes modified by MPB and TCS were over-represented in human breast cancer gene signatures, suggesting possible links with breast carcinogenesis. These findings highlight the issues of critical windows of susceptibility that may confer heightened sensitivity to environmental insults and implicate the potential health effects of these ubiquitous environmental chemicals in breast cancer.


Assuntos
Poluentes Ambientais/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Parabenos/toxicidade , Triclosan/toxicidade , Animais , Anti-Infecciosos Locais/toxicidade , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Glândulas Mamárias Animais/anatomia & histologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Conservantes Farmacêuticos/toxicidade , Ratos , Ratos Sprague-Dawley , Maturidade Sexual/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
9.
Microbiome ; 4(1): 26, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301250

RESUMO

BACKGROUND: This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. RESULTS: Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p < 0.05), which is consistent with our findings of a reduced Firmicutes/Bacteroidetes ratio at PND 62 in exposed rats. CONCLUSIONS: This study provides initial evidence that postnatal exposure to commonly used environmental chemicals at doses comparable to human exposure is capable of modifying the gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Parabenos/farmacologia , Ácidos Ftálicos/farmacologia , Triclosan/farmacologia , Animais , Bacteroidetes/isolamento & purificação , Betaproteobacteria/isolamento & purificação , Peso Corporal/efeitos dos fármacos , Deltaproteobacteria/isolamento & purificação , Poluição Ambiental/efeitos adversos , Fezes/microbiologia , Feminino , Firmicutes/isolamento & purificação , Período Pós-Parto , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
10.
Reprod Toxicol ; 54: 110-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25554385

RESUMO

The aim of the study is to determine whether low doses of "endocrine disrupting chemicals" (EDCs) affect the development and proliferative activity of the mammary glands (MGs). Adult parous/nulliparous female Sprague-Dawley (SD) rats were treated from post-natal day (PND) 1 until PND 180 with diethylphthalate (DEP), methylparaben (MPB), triclosan (TCS) and a mixture at doses comparable to human exposure. The doses (mg/kg b.w./day) were: DEP=0.173; MPB=0.105; TCS=0.05. EDC treatment resulted in mortality rates >20% in pups as early as lactation day 7. Significant morphological/histological changes were observed at the end of lactation in the MGs of EDC-treated dams. The total transcriptome profile as well as lactation-related genes in MGs also corroborate the morphological findings as more profound gene expression changes are present only at the weaning period. The study highlights the heightened sensitivity of the MGs during critical windows of exposure, particularly pregnancy and lactation, with an impact on pups' survival.


Assuntos
Disruptores Endócrinos/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Reprodução/efeitos dos fármacos , Fatores Etários , Animais , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Idade Gestacional , Lactação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Parabenos/toxicidade , Ácidos Ftálicos/toxicidade , Gravidez , Ratos Sprague-Dawley , Desenvolvimento Sexual/efeitos dos fármacos , Triclosan/toxicidade , Desmame
11.
Genome Integr ; 1(1): 16, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176161

RESUMO

BACKGROUND: The Nucleotide Excision Repair (NER) pathway specialises in UV-induced DNA damage repair. Inherited defects in the NER can predispose individuals to Xeroderma Pigmentosum (XP). UV-induced DNA damage cannot account for the manifestation of XP in organ systems not directly exposed to sunlight. While the NER has recently been implicated in the repair of oxidative DNA lesions, it is not well characterised. Therefore we sought to investigate the role of NER factors Xeroderma Pigmentosum A (XPA), XPB and XPD in oxidative DNA damage-repair by subjecting lymphoblastoid cells from patients suffering from XP-A, XP-D and XP-B with Cockayne Syndrome to hydrogen peroxide (H2O2). RESULTS: Loss of functional XPB or XPD but not XPA led to enhanced sensitivity towards H2O2-induced cell death. XP-deficient lymphoblastoid cells exhibited increased susceptibility to H2O2-induced DNA damage with XPD showing the highest susceptibility and lowest repair capacity. Furthermore, XPB- and XPD-deficient lymphoblastoid cells displayed enhanced DNA damage at the telomeres. XPA- and XPB-deficient lymphoblastoid cells also showed differential regulation of XPD following H2O2 treatment. CONCLUSIONS: Taken together, our data implicate a role for the NER in H2O2-induced oxidative stress management and further corroborates that oxidative stress is a significant contributing factor in XP symptoms. Resistance of XPA-deficient lymphoblastoid cells to H2O2-induced cell death while harbouring DNA damage poses a potential cancer risk factor for XPA patients. Our data implicate XPB and XPD in the protection against oxidative stress-induced DNA damage and telomere shortening, and thus premature senescence.

12.
Genome Integr ; 1(1): 7, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20678257

RESUMO

BACKGROUND: DNA double-strand breaks (DSBs) caused by ionizing radiation or by the stalling of DNA replication forks are among the most deleterious forms of DNA damage. The ability of cells to recognize and repair DSBs requires post-translational modifications to histones and other proteins that facilitate access to lesions in compacted chromatin, however our understanding of these processes remains incomplete. UHRF1 is an E3 ubiquitin ligase that has previously been linked to events that regulate chromatin remodeling and epigenetic maintenance. Previous studies have demonstrated that loss of UHRF1 increases the sensitivity of cells to DNA damage however the role of UHRF1 in this response is unclear. RESULTS: We demonstrate that UHRF1 plays a critical role for facilitating the response to DSB damage caused by gamma-irradiation. UHRF1-depleted cells exhibit increased sensitivity to gamma-irradiation, suggesting a compromised cellular response to DSBs. UHRF1-depleted cells show impaired cell cycle arrest and an impaired accumulation of histone H2AX phosphorylation (gammaH2AX) in response to gamma-irradiation compared to control cells. We also demonstrate that UHRF1 is required for genome integrity, in that UHRF1-depleted cells displayed an increased frequency of chromosomal aberrations compared to control cells. CONCLUSIONS: Our findings indicate a critical role for UHRF1 in maintenance of chromosome integrity and an optimal response to DSB damage.

13.
J Cell Mol Med ; 14(1-2): 403-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19840190

RESUMO

Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3'-->5' directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H(2)O(2)) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H(2)O(2) exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H(2)O(2). Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H(2)O(2). Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Fibroblastos/citologia , Fibroblastos/fisiologia , Instabilidade Genômica , Estresse Oxidativo , Telômero/metabolismo , Xeroderma Pigmentoso , Adulto , Senescência Celular/fisiologia , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Oxidantes/farmacologia , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...