Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Prev Res (Phila) ; 16(3): 139-151, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517462

RESUMO

Cinnamon and its bioactive compounds inhibit prostate cancer cell proliferation in vitro. The aim of the current study was to assess the chemopreventive efficacy of cinnamon (CN) and its bioactive compounds in vivo using N-methyl-N-nitrosourea (MNU) and testosterone (T) to induce prostate carcinogenesis in male Wistar/National Institute of Nutrition rats. Cancer-induced (CI) rats (n = 10) developed prostatic hyperplasia and prostatic intraepithelial neoplasia. These histopathologic changes were diminished in CI rats fed for 4 months with diets supplemented with either CN (n = 20) or its bioactive compounds (cinnamaldehyde, n = 10 and procyanidin B2, n = 10). Androgen receptor (AR) expression was lower in the prostates of CI rats than in control, but the AR target gene, probasin, was robustly upregulated. Treatment of CI rats with CN or its bioactive compounds upregulated AR expression but inhibited the expression of the 5-alpha reductase genes (Srd5a1 and Srd5a2) and did not further increase probasin expression, suggesting blunted transcriptional activity of AR due to the limited availability of dihydrotestosterone. MNU+T induced an altered oxidant status in rat prostate, which was reflected by an increase in lipid peroxidation and DNA oxidation. These changes were completely or partially corrected by treatment with CN or the bioactive compounds. CN and its active components increased the activity of the apoptotic enzymes caspase-8 and caspase-3 in the prostates of CI rats. In conclusion, our data demonstrate that CN and its bioactive compounds have inhibitory effects on premalignant prostate lesions induced by MNU + T and, therefore, may be considered for the chemoprevention of prostate cancer. PREVENTION RELEVANCE: The research work presented in this article demonstrates the chemopreventive efficacy of CN and its bioactive compounds in a rat model of premalignant prostate cancer.


Assuntos
Anticarcinógenos , Lesões Pré-Cancerosas , Neoplasias da Próstata , Humanos , Ratos , Masculino , Animais , Próstata/patologia , Cinnamomum zeylanicum , Ratos Wistar , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/prevenção & controle , Neoplasias da Próstata/patologia , Anticarcinógenos/farmacologia , Androgênios , Lesões Pré-Cancerosas/patologia , Carcinogênese/patologia , Proteínas de Membrana/efeitos adversos , Proteínas de Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/efeitos adversos , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo
2.
Phytother Res ; 35(10): 5781-5794, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363252

RESUMO

Cinnamon contains bioactive substances with diverse medicinal properties. We investigated the anticancer potential of abundant monophenols from cinnamon, namely, cinnamaldehyde, cinnamic acid, and eugenol, by hypothesizing that they possess proteasome inhibitory activities capable of suppressing cancer cell proliferation and inducing apoptosis. This hypothesis was tested by evaluating proteasome inhibitory activities of the compounds, and assessing downstream molecular and cellular events that are known to be impacted by proteasome inhibitors. The cinnamon compounds inhibited the catalytic activities of the proteasome in prostate cancer cells, but not in normal cells. Treatment with cinnamon compounds or the synthetic proteasome inhibitor MG132 upregulated p27 and IkBα proteins, and downregulated FoxM1 and angiogenic markers. These molecular events were associated with the decreased proliferation of prostate cancer cells. Treatment with cinnamon compounds or MG132 upregulated the expression of genes associated with endoplasmic reticulum (ER) stress/unfolded protein response (BIP, PERK, CHOP, and XBP1(S)). Furthermore, cinnamon compounds or MG132 upregulated the expression of genes required for the assembly of the caspase-8 activation platform in autophagosomes (LC3B, ATG5, p62, and Beclin1). The autophagy inhibitor, 3-methyladenine, blocked the compounds-mediated activation of caspase-8 and its downstream target caspase-3. In conclusion, proteasome inhibition by aromatic monophenols from cinnamon inhibits proliferation and leads to the death of prostate cancer cells by autophagy-dependent apoptosis.


Assuntos
Neoplasias da Próstata , Inibidores de Proteassoma , Apoptose , Linhagem Celular Tumoral , Cinnamomum zeylanicum , Estresse do Retículo Endoplasmático , Proteína Forkhead Box M1 , Humanos , Casca de Planta , Neoplasias da Próstata/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/farmacologia
3.
J Steroid Biochem Mol Biol ; 197: 105525, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705962

RESUMO

Vitamin D, a secosteroid that regulates mineral homeostasis via its actions in intestine, bone, kidneys and parathyroid glands, has many other target tissues, including skeletal muscle. In the present study, we used rats to examine if diet-induced vitamin D deficiency or insufficiency altered protein synthesis in muscle via the mTOR pathway, and impaired skeletal muscle quality by changing expression of genes needed for its function. Vitamin D deficiency resulted in reduced levels of phosphorylated mTOR, and suppressed mTOR-dependent phosphorylation of 4E-BP1 and p70-S6K, implying a decrease in activity of the protein synthesis machinery. These changes were coupled with up regulation of genes that are negative regulators of muscle growth (Fbxo32 & Trim63), leading to a net loss of skeletal muscle mass. Vitamin D deficiency or insufficiency also led to a decrease in expression of both myosin and actin-associated proteins (Myh1, Myh2, Myh7, Tnnc1& Tnnt1), which are essential for generation of the mechanical force needed for muscle contraction. We also detected a decrease in expression of glycolytic and oxidative enzyme genes (Hk2, Pfkm, Cs, Pdk4 & ßHad) and transcriptional coactivator genes (Ppargc-1α & Ppargc-1ß) which indicate a low oxidative capacity of skeletal muscle in the vitamin D deficient state. Furthermore, decreased citrate synthase activity corroborates a decrease in mitochondrial density and aerobic capacity of the muscle. In conclusion, our study demonstrates that chronic vitamin D deficiency or insufficiency reduced the size of skeletal muscle fibres, altered their composition, and decreased their oxidative potential. Most of the changes observed were reversible, either partially or completely, by restoring vitamin D to the diet of the deficient rats.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Deficiência de Vitamina D/fisiopatologia , Animais , Masculino , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
IUBMB Life ; 70(5): 445-457, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537730

RESUMO

Altered activity of the proteolytic machine-the 26S proteasome is observed in many disease conditions. Hence, either inhibition or activation of the 26S proteasome is thought to be a novel therapy for treatment of certain diseases such as cancer and neurodegenerative disorders. In this study, we tested the potential of cinnamon and one of its active ingredients, procyanidin-B2 (PCB2), in inhibiting the catalytic activities of the proteasome and suppressing prostate cancer cell growth. Proteasome activities were measured using fluorogenic substrates specific for the different enzymatic activities of the 26S proteasome by flourometry. Cell viability was assessed using the 3-[4, 5-dimethylthiazol-2-yl]-2.5-diphenyl-tetrazolium bromide assay, while apoptosis was examined by Hoechst and propidium iodide staining and caspase-3 activity. Both, the cinnamon extract and its PCB2-enriched F2 fraction inhibited the catalytic activities of the purified proteasome and the proteasome in cancer cells but not in normal cells. Furthermore, cinnamon and its active component decreased cell proliferation of human prostate cancer cells but not normal lung cells, decreased expression of anti-apoptotic and angiogenic markers in prostate cancer cell lysates. These results demonstrate that cinnamon extract and its PCB2-enriched fraction act as proteasome inhibitors and have prospects as anti-cancer agents. © 2018 IUBMB Life, 70(5):445-457, 2018.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Catequina/farmacologia , Cinnamomum zeylanicum/química , Regulação Neoplásica da Expressão Gênica , Proantocianidinas/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Inibidores da Angiogênese/isolamento & purificação , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Biflavonoides/isolamento & purificação , Catequina/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Enzimáticos , Humanos , Concentração Inibidora 50 , Masculino , Especificidade de Órgãos , Extratos Vegetais/química , Proantocianidinas/isolamento & purificação , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/isolamento & purificação , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Survivina/antagonistas & inibidores , Survivina/genética , Survivina/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
J Neuroinflammation ; 13(1): 256, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681882

RESUMO

BACKGROUND: The cholinergic anti-inflammatory pathway (CAP) primarily functions through acetylcholine (ACh)-alpha7 nicotinic acetylcholine receptor (α7nAChR) interaction on macrophages to control peripheral inflammation. Interestingly, ACh can also bind α7nAChRs on microglia resulting in neuroprotective effects. However, ACh effects on astrocytes remain elusive. Here, we investigated the effects of nicotine, an ACh receptor agonist, on the cytokine and cholinesterase production of immunocompetent human astrocytes stimulated with interleukin 1ß (IL-1ß) in vitro. In addition, the potential involvement of prostaglandins as mediators of nicotine was studied using cyclooxygenase 2 (COX-2) inhibition. METHODS: Cultured human fetal astrocytes were stimulated with human recombinant IL-1ß and treated simultaneously with nicotine at different concentrations (1, 10, and 100 µM). Cell supernatants were collected for cytokine and cholinesterase profiling using ELISA and MesoScale multiplex assay. α7nAChR expression on activated human astrocytes was studied using immunofluorescence. For the COX-2 inhibition studies, enzyme activity was inhibited using NS-398. One-way ANOVA was used to perform statistical analyses. RESULTS: Nicotine treatment dose dependently limits the production of critical proinflammatory cytokines such as IL-6 (60.5 ± 3.3, %inhibition), IL-1ß (42.4 ± 1.7, %inhibition), and TNF-α (68.9 ± 7.7, %inhibition) by activated human astrocytes. Interestingly, it also inhibits IL-8 chemokine (31.4 ± 8.5, %inhibition), IL-13 (34.243 ± 4.9, %inhibition), and butyrylcholinesterase (20.8 ± 2.8, %inhibition) production at 100 µM. Expression of α7nAChR was detected on the activated human astrocytes. Importantly, nicotine's inhibitory effect on IL-6 production was reversed with the specific COX-2 inhibitor NS-398. CONCLUSIONS: Activation of the cholinergic system through α7nAChR agonists has been known to suppress inflammation both in the CNS and periphery. In the CNS, earlier experimental data shows that cholinergic activation through nicotine inhibits microglial activation and proinflammatory cytokine release. Here, we report similar anti-inflammatory effects of cholinergic activation on human astrocytes, at least partly mediated through the COX-2 pathway. These results confirm the potential for cholinergic neuroprotection, which is looked upon as a promising therapy for neuroinflammation as well as neurodegenerative diseases and stroke. Our data implicates an important role for the prostaglandin system in cholinergic regulatory effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...