Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109752, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38699227

RESUMO

Breast cancers (BRCA) exhibit substantial transcriptional heterogeneity, posing a significant clinical challenge. The global transcriptional changes in a disease context, however, are likely mediated by few key genes which reflect disease etiology better than the differentially expressed genes (DEGs). We apply our network-based tool PathExt to 1,059 BRCA tumors across 4 subtypes to identify key mediator genes in each subtype. Compared to conventional differential expression analysis, PathExt-identified genes exhibit greater concordance across tumors, revealing shared and subtype-specific biological processes; better recapitulate BRCA-associated genes in multiple benchmarks, and are more essential in BRCA subtype-specific cell lines. Single-cell transcriptomic analysis reveals a subtype-specific distribution of PathExt-identified genes in multiple cell types from the tumor microenvironment. Application of PathExt to a TNBC chemotherapy response dataset identified subtype-specific key genes and biological processes associated with resistance. We described putative drugs that target key genes potentially mediating drug resistance.

2.
bioRxiv ; 2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37781626

RESUMO

Background: Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as Vorinostatis and DNA methyltransferase inhibitors (DNMTi) such as Zebularine. However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect. Methods: Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning. Results: We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1µM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model. Conclusions: Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

3.
Nat Commun ; 14(1): 5983, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752135

RESUMO

Resistance mechanisms to immune checkpoint blockade therapy (ICBT) limit its response duration and magnitude. Paradoxically, Interferon γ (IFNγ), a key cytokine for cellular immunity, can promote ICBT resistance. Using syngeneic mouse tumour models, we confirm that chronic IFNγ exposure confers resistance to immunotherapy targeting PD-1 (α-PD-1) in immunocompetent female mice. We observe upregulation of poly-ADP ribosyl polymerase 14 (PARP14) in chronic IFNγ-treated cancer cell models, in patient melanoma with elevated IFNG expression, and in melanoma cell cultures from ICBT-progressing lesions characterised by elevated IFNγ signalling. Effector T cell infiltration is enhanced in tumours derived from cells pre-treated with IFNγ in immunocompetent female mice when PARP14 is pharmacologically inhibited or knocked down, while the presence of regulatory T cells is decreased, leading to restoration of α-PD-1 sensitivity. Finally, we determine that tumours which spontaneously relapse in immunocompetent female mice following α-PD-1 therapy upregulate IFNγ signalling and can also be re-sensitised upon receiving PARP14 inhibitor treatment, establishing PARP14 as an actionable target to reverse IFNγ-driven ICBT resistance.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Feminino , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1 , Interferon gama , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Poli(ADP-Ribose) Polimerases
4.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37425784

RESUMO

Breast cancers exhibit substantial transcriptional heterogeneity, posing a significant challenge to the prediction of treatment response and prognostication of outcomes. Especially, translation of TNBC subtypes to the clinic remains a work in progress, in part because of a lack of clear transcriptional signatures distinguishing the subtypes. Our recent network-based approach, PathExt, demonstrates that global transcriptional changes in a disease context are likely mediated by a small number of key genes, and these mediators may better reflect functional or translationally relevant heterogeneity. We apply PathExt to 1059 BRCA tumors and 112 healthy control samples across 4 subtypes to identify frequent, key-mediator genes in each BRCA subtype. Compared to conventional differential expression analysis, PathExt-identified genes (1) exhibit greater concordance across tumors, revealing shared as well as BRCA subtype-specific biological processes, (2) better recapitulate BRCA-associated genes in multiple benchmarks, and (3) exhibit greater dependency scores in BRCA subtype-specific cancer cell lines. Single cell transcriptomes of BRCA subtype tumors reveal a subtype-specific distribution of PathExt-identified genes in multiple cell types from the tumor microenvironment. Application of PathExt to a TNBC chemotherapy response dataset identified TNBC subtype-specific key genes and biological processes associated with resistance. We described putative drugs that target top novel genes potentially mediating drug resistance. Overall, PathExt applied to breast cancer refines previous views of gene expression heterogeneity and identifies potential mediators of TNBC subtypes, including potential therapeutic targets.

5.
Pharmacol Ther ; 248: 108466, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301330

RESUMO

Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , RNA Longo não Codificante/genética , RNA Circular
6.
Genome Res ; 33(7): 1089-1100, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37316351

RESUMO

Recent studies exploring the impact of methylation in tumor evolution suggest that although the methylation status of many of the CpG sites are preserved across distinct lineages, others are altered as the cancer progresses. Because changes in methylation status of a CpG site may be retained in mitosis, they could be used to infer the progression history of a tumor via single-cell lineage tree reconstruction. In this work, we introduce the first principled distance-based computational method, Sgootr, for inferring a tumor's single-cell methylation lineage tree and for jointly identifying lineage-informative CpG sites that harbor changes in methylation status that are retained along the lineage. We apply Sgootr on single-cell bisulfite-treated whole-genome sequencing data of multiregionally sampled tumor cells from nine metastatic colorectal cancer patients, as well as multiregionally sampled single-cell reduced-representation bisulfite sequencing data from a glioblastoma patient. We show that the tumor lineages constructed reveal a simple model underlying tumor progression and metastatic seeding. A comparison of Sgootr against alternative approaches shows that Sgootr can construct lineage trees with fewer migration events and with more in concordance with the sequential-progression model of tumor evolution, with a running time a fraction of that used in prior studies. Lineage-informative CpG sites identified by Sgootr are in inter-CpG island (CGI) regions, as opposed to intra-CGIs, which have been the main regions of interest in genomic methylation-related analyses.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Metilação de DNA/genética , Sulfitos , Análise de Sequência de DNA/métodos , Genoma , Neoplasias/genética , Ilhas de CpG/genética
7.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333132

RESUMO

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.

8.
STAR Protoc ; 4(2): 102297, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37167059

RESUMO

Single-cell sequencing is a powerful technology to understand the heterogeneity of clinical biospecimens. Here, we present a protocol for obtaining single-cell suspension from neurofibromatosis type 1-associated nerve sheath tumors for transcriptomic profiling on the 10x platform. We describe steps for clinical sample collection, generation of single-cell suspension, and cell capture and sequencing. We then detail methods for integrative analysis, developmental Schwann cell trajectory building using bioinformatic tools, and comparative analysis. This protocol can be adapted for single-cell sequencing using mouse nerve tumors. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.

9.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046820

RESUMO

While much of the research in oncogenesis and cancer therapy has focused on mutations in key cancer driver genes, more recent work suggests a complementary non-genetic paradigm. This paradigm focuses on how transcriptional and phenotypic heterogeneity, even in clonally derived cells, can create sub-populations associated with oncogenesis, metastasis, and therapy resistance. We discuss this complementary paradigm in the context of pancreatic ductal adenocarcinoma. A better understanding of cellular transcriptional heterogeneity and its association with oncogenesis can lead to more effective therapies that prevent tumor initiation and slow progression.

10.
Nat Commun ; 13(1): 7664, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509773

RESUMO

Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Processamento Alternativo/genética , Splicing de RNA/genética , Neoplasias/genética , Transformação Celular Neoplásica , Fatores de Processamento de RNA/genética
11.
Cell Rep ; 40(12): 111363, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130486

RESUMO

Loss-of-function mutations in the polycomb repressive complex 2 (PRC2) occur frequently in malignant peripheral nerve sheath tumor, an aggressive sarcoma that arises from NF1-deficient Schwann cells. To define the oncogenic mechanisms underlying PRC2 loss, we use engineered cells that dynamically reassemble a competent PRC2 coupled with single-cell sequencing from clinical samples. We discover a two-pronged oncogenic process: first, PRC2 loss leads to remodeling of the bivalent chromatin and enhancer landscape, causing the upregulation of developmentally regulated transcription factors that enforce a transcriptional circuit serving as the cell's core vulnerability. Second, PRC2 loss reduces type I interferon signaling and antigen presentation as downstream consequences of hyperactivated Ras and its cross talk with STAT/IRF transcription factors. Mapping of the transcriptional program of these PRC2-deficient tumor cells onto a constructed developmental trajectory of normal Schwann cells reveals that changes induced by PRC2 loss enforce a cellular profile characteristic of a primitive mesenchymal neural crest stem cell.


Assuntos
Interferon Tipo I , Neurofibrossarcoma , Carcinogênese , Cromatina , Humanos , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , Neurofibrossarcoma/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
12.
iScience ; 25(9): 104962, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060076

RESUMO

Our understanding of miRNA activity at cellular resolution is thwarted by the inability of standard scRNA-seq protocols to capture miRNAs. We introduce a novel tool, miRSCAPE, to infer miRNA expression in a sample from its RNA-seq profile. We establish miRSCAPE's accuracy in 10 tumor and normal cohorts demonstrating its superiority over alternatives. miRSCAPE accurately infers cell type-specific miRNA activities (predicted versus observed fold-difference correlation ∼0.81) in two independent scRNA-seq datasets. We apply miRSCAPE to infer miRNA activities in scRNA clusters in pancreatic and lung adenocarcinomas, as well as in 56 cell types in the human cell landscape (HCL). In pancreatic and breast cancer scRNA-seq data, miRSCAPE recapitulates miRNAs associated with stemness and epithelial-mesenchymal transition (EMT) cell states, respectively. Overall, miRSCAPE recapitulates and refines miRNA biology at cellular resolution. miRSCAPE is freely available and is easily applicable to scRNA-seq data to infer miRNA activities at cellular resolution.

13.
Cancer Res ; 81(15): 3958-3970, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049974

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) tumors can originate either from acinar or ductal cells in the adult pancreas. We re-analyze multiple pancreas and PDAC single-cell RNA-seq datasets and find a subset of nonmalignant acinar cells, which we refer to as acinar edge (AE) cells, whose transcriptomes highly diverge from a typical acinar cell in each dataset. Genes upregulated among AE cells are enriched for transcriptomic signatures of pancreatic progenitors, acinar dedifferentiation, and several oncogenic programs. AE-upregulated genes are upregulated in human PDAC tumors, and consistently, their promoters are hypomethylated. High expression of these genes is associated with poor patient survival. The fraction of AE-like cells increases with age in healthy pancreatic tissue, which is not explained by clonal mutations, thus pointing to a nongenetic source of variation. The fraction of AE-like cells is also significantly higher in human pancreatitis samples. Finally, we find edge-like states in lung, liver, prostate, and colon tissues, suggesting that subpopulations of healthy cells across tissues can exist in pre-neoplastic states. SIGNIFICANCE: These findings show "edge" epithelial cell states with oncogenic transcriptional activity in human organs without oncogenic mutations. In the pancreas, the fraction of acinar cells increases with age.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/fisiopatologia , Carcinoma Ductal Pancreático/mortalidade , Humanos , Análise de Sobrevida
14.
Cell ; 184(8): 2033-2052.e21, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765443

RESUMO

Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.


Assuntos
Terapia de Imunossupressão , Células Mieloides/metabolismo , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Engenharia Genética , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/imunologia , Metástase Neoplásica , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Taxa de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral
15.
Immunity ; 53(6): 1182-1201.e8, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33242395

RESUMO

αß lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αß thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αß thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αß T cell development.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Subpopulações de Linfócitos T/imunologia , Timócitos/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Epigenoma , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Camundongos , Subpopulações de Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...