Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(12): 7253-7273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542649

RESUMO

Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.


Assuntos
Metformina , Neuroblastoma , Doença de Parkinson , Humanos , Animais , Camundongos , Idoso , Doença de Parkinson/tratamento farmacológico , Trealose/farmacologia , Trealose/uso terapêutico , Camundongos Endogâmicos C57BL , Autofagia , Dopamina , Metformina/farmacologia , Metformina/uso terapêutico
2.
Daru ; 31(2): 135-144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37393413

RESUMO

BACKGROUND: Trehalose is a non-reducing disaccharide synthesized by lower organisms. It has recently received special attention because of its neuroprotective properties by stimulating autophagy in Parkinson's disease (PD) models. Therefore, evaluating whether trehalose affects metabolic organs is vital to determine its neurotherapeutic safety. METHODS: We validated the trehalose neuroprotective dosage in a PD model induced with intraperitoneal paraquat administration twice weekly for 7 weeks. One week before paraquat administration, mice were treated with trehalose in the drinking water and continued along with paraquat treatment. Histological and morphometrical analyses were conducted on the organs involved in trehalose metabolism, including the liver, pancreas, and kidney. RESULTS: Paraquat-induced dopaminergic neuronal loss was significantly decreased by trehalose. After trehalose treatment, the liver morphology, the mononucleated/binucleated hepatocytes percentage, and sinusoidal diameter remained unchanged in each liver lobes. Endocrine and exocrine pancreas's histology was not affected, nor was any fibrotic process observed. The islet of Langerhans's structure was preserved when analyzing the area, the largest and smallest diameter, and circularity. Renal morphology remained undamaged, and no changes were identified within the glomerular basement membrane. The renal corpuscle structure did not suffer alterations in the Bowman's space, area, diameter, circularity, perimeter, and cellularity. Besides, the renal tubular structures's luminal area and internal and external diameter were preserved. CONCLUSION: Our study demonstrates that systemic trehalose administration preserved the typical histological architecture of the organs involved in its metabolism, supporting its safety as a potential neuroprotective agent.


Assuntos
Paraquat , Trealose , Camundongos , Animais , Trealose/farmacologia , Trealose/uso terapêutico , Rim , Fígado , Pâncreas
3.
Neurotoxicology ; 95: 181-192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775208

RESUMO

The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Masculino , Cobre/toxicidade , Cobre/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Envelhecimento
4.
Naunyn Schmiedebergs Arch Pharmacol ; 395(10): 1239-1255, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895156

RESUMO

Rapamycin is the best-characterized autophagy inducer, which is related to its antiaging and neuroprotective effects. Although rapamycin is an FDA-approved drug for human use in organ transplantation and cancer therapy, its administration as an antiaging and neuroprotective agent is still controversial because of its immunosuppressive and reported side effects. Therefore, it is critical to determine whether the dose that exerts a neuroprotective effect, 35 times lower than that used as an immunosuppressant agent, harms peripheral organs. We validated the rapamycin neuroprotective dosage in a Parkinson's disease (PD) model induced with paraquat. C57BL/6 J mice were treated with intraperitoneal (IP) rapamycin (1 mg/kg) three times per week, followed by paraquat (10 mg/kg) twice per week for 6 weeks, along with rapamycin on alternate days. Rapamycin significantly decreased dopaminergic neuronal loss induced by paraquat. Since rapamycin's neuroprotective effect in a PD model was observed at 7 weeks of treatment; we evaluated its effect on the liver, kidney, pancreas, and spleen. In addition, we prolonged treatment with rapamycin for 14 weeks. Tissue sections were subjected to histochemical, immunodetection, and morphometric analysis. Chronic rapamycin administration does not affect bodyweight, survival, and liver or kidney morphology. Although the pancreas tissular architecture and cellular distribution in Langerhans islets are modified, they may be reversible. The spleen B lymphocyte and macrophage populations were decreased. Notably, the lymphocyte T population was not affected. Therefore, chronic administration of a rapamycin neuroprotective dose does not produce significant tissular alterations. Our findings support the therapeutic potential of rapamycin as a neuroprotective agent.


Assuntos
Fármacos Neuroprotetores , Animais , Humanos , Imunossupressores/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Paraquat , Sirolimo/farmacologia , Sirolimo/uso terapêutico
5.
Mol Neurobiol ; 58(11): 5517-5532, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34350555

RESUMO

Parkinson's disease (PD) ranks first in the world as a neurodegenerative movement disorder and occurs most commonly in an idiopathic form. PD patients may have motor symptoms, non-motor symptoms, including cognitive and behavioral changes, and symptoms related to autonomic nervous system (ANS) failures, such as gastrointestinal, urinary, and cardiovascular symptoms. Unfortunately, the diagnostic accuracy of PD by general neurologists is relatively low. Currently, there is no objective molecular or biochemical test for PD; its diagnosis is based on clinical criteria, mainly by cardinal motor symptoms, which manifest when patients have lost about 60-80% of dopaminergic neurons. Therefore, it is urgent to establish a panel of biomarkers for the early and accurate diagnosis of PD. Once the disease is accurately diagnosed, it may be easier to unravel idiopathic PD's pathogenesis, and ultimately, finding a cure. This review discusses several biomarkers' potential to set a panel for early idiopathic PD diagnosis and future directions.


Assuntos
Biomarcadores/análise , Diagnóstico Precoce , Doença de Parkinson/diagnóstico , Biomarcadores/sangue , Biomarcadores/urina , Sistema Nervoso Entérico/química , Exossomos/química , Fezes/química , Humanos , Inflamação/metabolismo , Intestinos/metabolismo , Intestinos/microbiologia , Microbiota , Boca/microbiologia , Especificidade de Órgãos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Permeabilidade , Pele/química , alfa-Sinucleína/análise
6.
Antioxidants (Basel) ; 10(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803945

RESUMO

Oxidative stress is considered one of the pathological mechanisms that cause Parkinson's disease (PD), which has led to the investigation of several antioxidants molecules as a potential therapeutic treatment against the disease. Although preclinical studies have demonstrated the efficacy of these compounds to maintain neuronal survival and activity in PD models, these results have not been reflected in clinical trials, antioxidants have not been able to act as disease modifiers in terms of clinical symptoms. Translational medicine currently faces the challenge of redesigning clinical trials to standardize criteria when testing molecules to reduce responses' variability. Herein, we discuss current challenges and opportunities regarding several non-enzymatic antioxidants' therapeutic molecules for PD patients' potential treatment.

7.
Mol Neurobiol ; 56(12): 8136-8156, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31197654

RESUMO

The neurodegenerative process of Parkinson's disease (PD) involves autophagy impairment and oxidative stress. Therefore, we wanted to determine whether stimulation of autophagy protects dopaminergic cell death induced by oxidative stress in a PD model. Since environmental exposure to herbicides increases the risk to develop PD, the experimental model was established using the herbicide paraquat, which induces autophagy disruption, oxidative stress, and cell death. Rapamycin-stimulated autophagy inhibited calpain-dependent and independent apoptosis induced by paraquat. Autophagy stimulation decreased oxidative stress and peroxiredoxins (PRXs) hyperoxidation induced by paraquat. Cells exposed to paraquat displayed abnormally large autophagosomes enclosing mitochondria, which correlates with an increase of p62, an essential mitophagy regulator. Interestingly, when autophagy was stimulated before paraquat treatment, autophagosome size and number were similar to that observed in control cells. Motor and cognitive function impairment induced by paraquat showed an improvement when preceded by autophagy stimulation. Importantly, dopaminergic neuronal death and microglial activation mediated by paraquat were significantly reduced by rapamycin-induced autophagy. Our results indicate that autophagy stimulation has a protective effect on dopaminergic neurons and may have a promising potential to prevent or delay PD progression.


Assuntos
Autofagia/fisiologia , Morte Celular/fisiologia , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Herbicidas/toxicidade , Humanos , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...