Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1095449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899837

RESUMO

Finger millet (Eluesine coracana L.) is gaining importance as a food crop with the increasing emphasis on nutritional aspects and drought resilience. However, the average productivity of the crop has stagnated at around 2,000 kg ha-1 in India. Recently released nutrient responsive high yielding varieties are reported to respond better to application of fertilizers/manures. Further, substitution of chemical fertilizers with organic manures to maintain sustainable yields and improve soil health is gaining attention in recent years. Therefore, identifying the appropriate rate and source of nutrition is important to enhance the productivity of finger millet while improving the soil health. A field experiment was conducted during two rainy seasons (July-November, 2018 and 2019) to study the response of finger millet varieties to chemical fertilizers and farmyard manure (FYM) on growth, yields, N use efficiency, N uptake and on soil properties. Two varieties MR-1 and MR-6 were tested with four nutrient management practices viz., unamended control, 100% recommended dose of fertilizers (RDF; 40-20-20 kg NPK ha-1), 50% RDF + 50% recommended dose of nitrogen (RDN) as FYM and 100% RDN as FYM. Among the varieties, MR-6 outperformed MR-1 in terms of growth, yield, N use efficiency and N uptake. The yield enhancement was up to 22.6% in MR-6 compared to MR-1 across the nutrient management practices. Substituting FYM completely or half of the fertilizer dose increased the growth and yield of finger millet compared to application of chemical fertilizers alone. Similarly, the average biomass yield, ears m-2, grain yield, total N uptake and N use efficiency in response to nutrient management practices followed the order of 100% RDN as FYM > 50% RDF + 50% RDN as FYM > 100% RDF. The soil organic carbon, available N, P, K, and S improved by 25.0, 12.9, 5.7, 6.1, and 22.6%, respectively in the plots under higher rate of FYM application (8 Mg ha-1) compared to plots under chemical fertilizers alone. We conclude that substituting chemical fertilizers either completely or by up to 50% with organic manures supplies adequate amounts of nutrients, improves the yield of finger millet, economic returns, and soil properties.

2.
Front Nutr ; 10: 1127970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234556

RESUMO

Mineral and vitamin deficiencies together affect a greater number of human populations in the world than does protein malnutrition. Organic farming is reported to improve nutritional quality of food grains while also improving soil health. However, sufficient scientific information on several aspects of organic farming based on long-term studies is lacking particularly under rainfed conditions of India. The purpose of this study was to assess the long-term impact of organic and integrated production systems on crops yield and quality, economic returns and soil properties. The study was conducted with three crops, sunflower (Helianthus annuus L.), pigeonpea (Cajanus cajan L.), and greengram [Vigna radiata (L.) Wilczek] under three different production systems, control (use of chemical inputs alone), organic and integrated. The results of the 10-year study revealed that, the average production of integrated system was on par with organic management and recorded significantly higher pigeonpea equivalent yield (PEY) (827 kg ha-1) compared to control (chemical inputs) (748 kg ha-1). In general, the yield gap between organic and integrated production systems declined from fourth year for greengram and eighth year for sunflower, during the 10-year experimental period whereas the pigeonpea yield was similar under both production systems from first year. Plots under organic management had significantly lower bulk density (1.18 mg m-3), higher water holding capacity (38.72%) and porosity (53.79%) compared to integrated production system and control (chemical inputs). The soil organic C (SOC) content in the plots under organic production system was 32.6% more than the initial organic carbon of the soil (0.43%), with higher soil N (205.2 kg ha-1). Plots under integrated production system, however, had higher soil P (26.5 kg ha-1) compared with other treatments. The dehydrogenase activity (5.86 µg TPF g-1 soil h-1) and microbial biomass carbon (317.3 µg g-1 soil) content was higher in the plots under organic production system than under other systems. Organically produced pigeonpea and greengram seeds had similar protein content with that of integrated system, and higher K and micronutrient (Fe, Zn, Cu, and Mn) contents than other treatments. The results show the potential of organic production system in improving crop yields, soil properties and produce quality in semiarid rainfed areas.

3.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955651

RESUMO

By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.


Assuntos
Produtos Agrícolas , Estresse Fisiológico , Humanos , Desenvolvimento Vegetal , Proteômica/métodos , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...