Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Noncoding RNA Res ; 9(4): 1140-1158, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022680

RESUMO

Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.

3.
Sci Rep ; 14(1): 12841, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834703

RESUMO

Organic-inorganic hybrid light-emitting devices have garnered significant attention in the last few years due to their potential. These devices integrate the superior electron mobility of inorganic semiconductors with the remarkable optoelectronic characteristics of organic semiconductors. The inquiry focused on analyzing the optical and electrical properties of a light-emitting heterojunction that combines p-type GaN with organic materials (PEDOT, PSS, and PMMA). This heterojunction is an organic-inorganic hybrid. The procedure entailed utilizing a spin-coating technique to apply a layer of either poly(methyl methacrylate) (PMMA) or a mixture of PMMA and poly(3,4ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) onto an indium tin oxide (ITO) substrate. Subsequently, different Nd:YAG laser pulses (200, 250, and 300 pulses) were used to administer a GaN inorganic layer onto the prepared organic layer using a pulsed laser deposition approach. Subsequently, the thermal evaporation technique was employed to deposit an aluminum electrode on the top of the organic and inorganic layers, while laser pulses were fine-tuned for optimal performance. The Hall effect investigation verifies the p-type conductivity of the GaN material. The electroluminescence studies confirmed the production of blue light by the GaN-based devices throughout a range of voltage situations, spanning from 45 to 72 V.

4.
Heliyon ; 10(11): e31851, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845893

RESUMO

Cervical cancer is caused by changes in the cervix that lead to precancerous cells and eventually progress to cancer. Human papillomavirus (HPV) infections are the primary cause of cervical cancer. Early detection of HPV is crucial in preventing cervical cancer, and regular screening for HPV infection can identify cell changes before they develop into cancer. While Pap smear tests are reliable for cervical cancer screening, they are critical, expensive, and labor-intensive. Therefore, researchers are focusing on identifying blood-based biomarkers using biosensors for cervical cancer screening. HPV strains 16, 45, and 18 are common culprits in cervical cancer. This study aimed to develop an HPV-16 DNA biosensor on a zeolite-iron oxide (zeolite-IO) modified interdigitated electrode (IDE) sensor. The DNA probe was immobilized on the IDE through amine-modified zeolite-IO, enhancing the hybridization of the target and DNA probe. The detection limit of the DNA-DNA duplex was found to be 7.5 pM with an R2 value of 0.9868. Additionally, control experiments with single and triple mismatched sequences showed no increase in current responses, and the identification of target DNA in a serum-spiked sample indicated specific and selective target identification.

5.
Heliyon ; 10(9): e30440, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742087

RESUMO

Sechium edule, commonly known as chayote is known for its low glycemic index, high fiber content, and rich nutritional profile, which suggests it may be beneficial for individuals with diabetes. While research specifically examining the impact of chayote on diabetes is limited, this study screened its biological impacts by using different biomarkers on streptozotocin-induced diabetic (STZ-ID) rats. The ethanolic extract of the Sechium edule fruits was assessed for different phytochemical, biochemical, and anti-diabetic properties. In the results, chayote extract had high phenolic and flavonoid contents respectively (39.25 ± 0.65 mg/mL and 12.16 ± 0.50 mg/mL). These high phenolic and flavonoid contents showed high implications on STZ-ID rats. Altogether 200 and 400 mg/kg of the extract considerably reduced the blood sugar level and enhanced the lipid profile of the STZ-ID rats. Additionally, they have decreased blood urea and serum creatinine levels. Besides, the levels of SGOT, SGPT, LDH, sodium, and potassium ions were significantly lowered after the administration period. More importantly, the electrocardiogram (ECG) parameters such as QT, RR, and QTc which were prolonged in the diabetic rats were downregulated after 35 days of administration of S. edule extract (400 mg/kg). And, the histological examination of the pancreas and kidney showed marked improvement in structural features of 200 and 400 mg/kg groups when compared to the diabetic control group. Where the increase in the glucose levels was positively correlated with QT, RR, and QTc (r2 = 0.76, r2 = 0.76, and r2 = 0.43) which means that ECG could significantly reflect the diabetes glucose levels. In conclusion, our findings showed that the fruit extract exerts a high potential to reduce artifacts secondary to diabetes which can be strongly suggested for diabetic candidates. However, there is a need to study the molecular mechanisms of the extract in combating artifacts secondary to diabetes in experimental animals.

6.
Curr Med Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38721792

RESUMO

Over the past few decades, women have been troubled by grave diseases such as breast cancer, which are biologically and molecularly classified as hereditary diseases. Even though the risk of other cancers is relatively different and the downstream pathway of genetic mutation differs from breast cancer, the continued transformation of genes such as BRCA1 and BRCA2 leads to breast cancer malignancy. Notably at the molecular level, a parallel connection between the normal growth of breast and the progression of mammary cancer where the breast cancer stem cells play a crucial role in the advancement of mammary carcinoma. Arguably, several significant signaling pathways, for instance, ER signaling, HER2 signaling, and Wnt signaling control the typical breast development as well as breast stem cells, thereby cell proliferation, cell differentiation, and cell motility are involved. Incidentally, the Mouse Mammary Tumor Virus (MMTV) is notable among the unexplained viral components influenced by virus-corrupting mammary carcinomas. According to the genesis, MMTV proviral DNA is integrated into mammary epithelial cells, and genomic lymphoid cells during viral replication and triggers the progression of cellular oncogenesis. This overview reveals the deadliest theories on breast cancer, molecular mechanisms, and the MMTV transmission cycle. To establish prevention therapies that are both acceptable and efficacious, addressing apprehensions related to the toxicity of these interventions must be a preliminary hurdle to overcome.

7.
Biogerontology ; 25(4): 705-737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619670

RESUMO

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.


Assuntos
Extratos Vegetais , Folhas de Planta , Polyalthia , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Sirtuína 2 , Superóxido Dismutase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA/métodos , Metanol/química , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Heliyon ; 10(5): e27433, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495156

RESUMO

Parkinson's disease is a neurodegenerative condition defined by the progressive death of dopaminergic neurons in the brain. The diagnosis of Parkinson's disease often uses time-consuming clinical evaluations and subjective assessments. Electrochemical Impedance Spectroscopy (EIS) is a useful technique for electroanalytical devices due to its label-free performance, in-situ measurements, and low cost. The development of reliable diagnostic tools for Parkinson's disease can be significantly enhanced by exploring novel techniques like faradaic and non-faradaic EIS detection methods. These techniques have the ability to identify specific biomarkers or changes in electrochemical properties linked to Parkinson's disease, allowing for an early and accurate diagnosis. Faradaic EIS detection methods utilize redox processes on the electrode surface, while non-faradaic EIS methods rely on charge transfer or capacitive properties. EIS can identify biomarkers or changes in electrical properties as indicators of Parkinson's disease by measuring impedance at different frequencies. By combining both faradaic and non-faradaic EIS approaches, it may be possible to obtain a comprehensive understanding of the electrochemical changes occurring in Parkinson's disease patients. This may lead to the development of more effective diagnostic techniques and potentially opening up new avenues for personalized treatment strategies. This review explores the current research on faradaic and non-faradaic EIS approaches for diagnosing Parkinson's disease using electrochemical impedance spectroscopy.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38494932

RESUMO

Despite decades of research and effort, treating cancer is still a challenging task. Current conventional treatments are still unsatisfactory to fully eliminate and prevent re-emergence or relapses, and targeted or personalised therapy, which are more effective in managing cancer, may be unattainable or inaccessible for some. In the past, research in natural products have yielded some of the most commonly used cancer treatment drugs known today. Hence it is possible more are awaiting to be discovered. Withanone, a common withanolide found in the Ayurvedic herb Withania somnifera, has been claimed to possess multiple benefits capable of treating cancer. This review focuses on the potential of withanone as a safe cancer treatment drug based on the pharmacokinetic profile and molecular mechanisms of actions of withanone. Through these in silico and in vitro studies discussed in this review, withanone showspotent anticancer activities and interactions with molecular targets involved in cancer progression. Furthermore, some evidences also show the selective killing property of withanone, which highlights the safety and specificity of withanone in targeting cancer cell. By compiling these evidences, this review hopes to spark interest for future research to be conducted in more extensive studies involving withanone to generate more data, especially involving in vivo experiments and toxicity evaluation of withanone.

10.
iScience ; 27(4): 109347, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550986

RESUMO

Nanosensors have gained significant attention in recent years for improving energy conversion and storage performance in solar cells. These nanosensors, typically made from nanoparticles or nanowires, can be embedded within the solar cell to monitor parameters like temperature and light intensity. By monitoring these parameters, nanosensors provide real-time feedback and control to optimize the efficiency and performance of the solar cell. They also play a role in detecting potential issues, such as defects, for proactive maintenance and troubleshooting. The integration of nanosensors in solar cells enables the development of smart energy systems, leading to increased power output, improved stability, and a longer lifespan of solar cells. The deployment of nanosensors in solar cells offer promising trajectory for advancing energy conversion, utilization, and storage capabilities. This review summarizes recent advances in nanosensors in solar cells, with a focus on the role they play in enhancing energy conversion, utilization, and storage performance.

11.
Biotechnol Appl Biochem ; 71(3): 627-640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311972

RESUMO

Parmotrema perlatum, a lichen belonging to the family Parmeliaceae, is well known for its culinary benefits and aroma used as a condiment in Indian homes is also known as the "black stone flower" or "kalpasi" in India. This research intends to analyze the antioxidant power of the crude extracts using four pH-based buffers solubilized proteins/peptides and RP-HPLC fractions of P. perlatum obtained by purification. The proteins that were extracted from the four different buffers were examined using LC-MS/MS-based peptide mass fingerprinting. When compared to the other buffers, the 0.1 M of Tris-HCl buffer pH 8.0 solubilized proteins/peptides had the strongest antioxidant capacity. The sequential purification of the peptide was carried out by using a 3-kDa cut-off membrane filter and semipreparative RP-HPLC. Additionally, the purified fractions of the peptide's antioxidant activity were assessed, and effects were compared with those of the crude and 3 kDa cut--off membrane filtrates. The peptide fractions were sequenced by LC-MS/MS, which reveals that fraction 2 from RP-HPLC with the sequence LSWFMVVAP has shown the highest antioxidant potential in comparison with other fractions which can serve as the potential natural antioxidant drug. Further, fraction 2 also showed antibacterial activity against the selected microorganisms.


Assuntos
Antibacterianos , Antioxidantes , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Mapeamento de Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Líquens/química , Parmeliaceae/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/isolamento & purificação , Espectrometria de Massa com Cromatografia Líquida
12.
Biotechnol Appl Biochem ; 71(3): 661-669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38409854

RESUMO

Breast cancer has been reported to be high in its incidence with women, and early identification of breast cancer helps to improve and provide an effective treatment. Tumor markers are active substances; in particular, human epidermal growth factor receptor 2 (HER2) is over-expressed at the level of 20%-30%. This research work developed a highly sensitive HER2 biosensor on the interdigitated electrode (IDE) by using aptamer as a detection probe. To enhance the analytical performances, aptamer was attached to the gold nanoparticle and immobilized on the IDE through a chemical linker [(3-aminopropyl)triethoxysilane]. On the aptamer conjugation, HER2 was quantified through current-volt measurements, and the limit of detection of HER2 was calculated as 1 pg/mL on a linear range from 0.1 to 3000 pg/mL at an R2 (regression coefficient) of 0.9657. Further, a selective performance with human serum increased the current responses by increasing HER2 concentrations. Specific experiments with control protein and complementary aptamer sequence failed to enhance the current responses. This HER2 biosensor reflects the occurrence of breast cancer at its lower abundance and helps to identify the associated complications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias da Mama , Eletrodos , Receptor ErbB-2 , Humanos , Aptâmeros de Nucleotídeos/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análise , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Feminino , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas
13.
ACS Omega ; 9(5): 5100-5126, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343989

RESUMO

Mercury is a type of hazardous and toxic pollutant that can result in detrimental effects on the environment and human health. This review is aimed at discussing the state-of-the-art progress on the recent developments on the toxicity of mercury and its chemical compounds. More than 210 recent works of literature are covered in this review. It first delineates the types (covering elemental mercury, inorganic mercury compounds, organic mercury compounds), structures, and sources of mercury. It then discusses the pharmacokinetic profile of mercury, molecular mechanisms of mercury toxicity, and clinical manifestation of acute and chronic mercury toxicity to public health. It also elucidates the mercury toxicity to the environment and human health in detail, covering ecotoxicity, neurotoxicity diseases, neurological diseases, genotoxicity and gene regulation, immunogenicity, pregnancy and reproductive system damage, cancer promotion, cardiotoxicity, pulmonary diseases, and renal disease. In order to mitigate the adverse effects of mercury, strategies to overcome mercury toxicity are recommended. Finally, some future perspectives are provided in order to advance this field of research in the future.

14.
Curr Med Chem ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38367263

RESUMO

Neurodegenerative diseases (NDDs) comprise a large number of disorders that affect the structure and functions of the nervous system. The major cause of various neurodegenerative diseases includes protein aggregation, oxidative stress and inflammation. Over the last decade, there has been a gradual inclination of neurological research in order to find drugs that can prevent, slow down, or treat these diseases. The most common NDDs are Alzheimer's, Parkinson's, and Huntington's illnesses which claims the lives of 6.8 million people worldwide each year and it is expected to rise by 7.1%. The focus on alternative medicine, particularly plant-based products, has grown significantly in recent years. Plants are considered a good source of biologically active molecules and hence phytochemical screening of plants will pave the way for discovering new drugs. Neurodegeneration has long been linked to oxidative stress, either as a direct cause or as a side effect of other variables. Therefore, it has been proposed that the use of antioxidants to combat cellular oxidative stress within the nervous system may be a viable therapeutic strategy for neurological illnesses. In order to prevent and treat NDDs, this review article covers the therapeutic compounds/ metabolites from plants with the neuroprotective role. However, these exhibit other beneficial molecular functions in addition to antioxidant activity is the potential application in the management or prevention of neurodegenerative disorders. Further, it gives future researchers the significance of considering peptide-based therapeutics through various mechanisms in delaying or curing neurodegenerative diseases.

15.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346247

RESUMO

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Assuntos
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradação Ambiental , Ágar , Glicerol , Asparagina , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Carbono , Tensoativos/química
16.
Int J Biol Macromol ; 259(Pt 1): 129222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185307

RESUMO

The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 µM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.


Assuntos
Curcumina , Diosmina , Simulação de Acoplamento Molecular , Pepsina A/metabolismo , Tripsina/metabolismo , Curcumina/farmacologia , Cinética , Polifenóis/farmacologia , Flavonoides/farmacologia , Flavonoides/química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
17.
Mikrochim Acta ; 191(2): 118, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296851

RESUMO

Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.


Assuntos
Técnicas Biossensoriais , Neoplasias da Próstata , Masculino , Humanos , Lectinas/química , Biomarcadores Tumorais , Antígeno Prostático Específico , Maackia/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Técnicas Biossensoriais/métodos
18.
Biotechnol Appl Biochem ; 71(2): 429-445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238920

RESUMO

Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , Nanoestruturas , Nanotubos de Carbono , Humanos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/microbiologia , Bactérias
19.
Biochimie ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918463

RESUMO

Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.

20.
Curr Med Chem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37877148

RESUMO

Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...