Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 13728-13737, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38560004

RESUMO

Geopolymers, a class of sustainable inorganic materials derived from natural and recycled resources, hold promise for various applications, including thermoelectric power generation. This study delves into the thermoelectric properties of Ikere white (IKW)-geopolymer, derived from kaolin clay, by employing rigorous measurements of thermal conductivity, electrical conductivity, and Seebeck coefficient. The investigation elucidates the pivotal role of temperature and ions in shaping the thermoelectric performance of IKW-geopolymer. Electrical conductivity analysis pinpoints ions within the geopolymer's channels as primary contributors. Beyond a critical temperature, the evaporation of bulk water triggers a transition of charge carriers from one- to three-dimensional motion, resulting in reduced conductivity. The Seebeck coefficient exhibits a range from -182 to 42 µV/K, with its time-dependent profile suggesting that ions potentially drive thermoelectricity in cementitious materials. Notably, a unique transition from n-type to p-type behavior was observed in the geopolymer, opening new avenues for ionic thermoelectric capacitors. These insights advance our understanding of thermoelectric behavior in geopolymers and have the potential to propel the development of novel building materials for energy conversion applications.

2.
ACS Sustain Chem Eng ; 12(5): 1911-1917, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333204

RESUMO

The urban heat island effect has become a critical issue in urban areas, intensifying heat-related problems and increasing energy consumption. A sustainable cement formulation that combines ordinary Portland cement (OPC) with a carbonated aggregate derived from Periwinkle shell powder for the development of an efficient cool material is presented. Through a carbonation process, the aggregate undergoes a transformation, capturing carbon dioxide (CO2) and converting it into calcite. The resulting cement mixture exhibits high solar reflective properties, making it a potential candidate for cool pavement and roof applications. In this study, the raw materials, including the Periwinkle shell powder, were characterized, and the carbonation process was evaluated to quantify the CO2 capture efficiency. Additionally, a real test of the efficiency of this new cement on a roof demonstrated that the material achieved a significant cooling effect, being 6 °C cooler than that with standard OPC at the peak of solar radiation.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432225

RESUMO

Electrical conductive properties in cement-based materials have received attention in recent years due to their key role in many innovative application (i.e., energy harvesting, deicing systems, electromagnetic shielding, and self-health monitoring). In this work, we explore the use 3D printing as an alternative method for the preparation of electrical conductive concretes. With this aim, the conductive performance of cement composites with carbon nanofibers (0, 1, 2.5, and 4 wt%) was explored by means of a combination of thermogravimetric analysis (TGA) and dielectric spectroscopy (DS) and compared with that of specimens prepared with the traditional mold method. The combination of TGA and DS gave us a unique insight into the electrical conductive properties, measuring the specimens' performance while monitoring the amount in water confined in the porous network. Experimental evidence of an additional contribution to the electrical conductivity due to sample preparation is provided. In particular, in this work, a strong correlation between water molecules in interconnected pores and the σ(ω) values is shown, originating, mainly, from the use of the 3D printing technique.

4.
Materials (Basel) ; 15(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295154

RESUMO

Thermal energy storage (TES) systems are dependent on materials capable of operating at elevated temperatures for their performance and for prevailing as an integral part of industries. High-temperature TES assists in increasing the dispatchability of present power plants as well as increasing the efficiency in heat industry applications. Ordinary Portland cement (OPC)-based concretes are widely used as a sensible TES material in different applications. However, their performance is limited to operation temperatures below 400 °C due to the thermal degradation processes in its structure. In the present work, the performance and heat storage capacity of geopolymer-based concrete (GEO) have been studied experimentally and a comparison was carried out with OPC-based materials. Two thermal scenarios were examined, and results indicate that GEO withstand high running temperatures, higher than 500 °C, revealing higher thermal storage capacity than OPC-based materials. The high thermal energy storage, along with the high thermal diffusion coefficient at high temperatures, makes GEO a potential material that has good competitive properties compared with OPC-based TES. Experiments show the ability of geopolymer-based concrete for thermal energy storage applications, especially in industries that require feasible material for operation at high temperatures.

5.
Chemistry ; 27(44): 11238, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180570

RESUMO

Invited for the cover of this issue is Cyril Aymonier and co-workers at University of Bordeaux and University of the Basque Country. The image depicts the different distributions of water molecules in xonotlite and tobermorite nanominerals synthesised in supercritical water. Read the full text of the article at 10.1002/chem.202100098.


Assuntos
Água , Compostos de Cálcio , Humanos , Silicatos
6.
Chemistry ; 27(44): 11309-11318, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33999438

RESUMO

Calcium silicate hydrates are members of a large family of minerals with layered structures containing pendant CaOH and SiOH groups that interact with confined water molecules. To rationalize the impact of the local chemical environment on the dynamics of water, SiOH- and CaOH-rich model nanocrystals were synthesized by using the continuous supercritical hydrothermal method and then systematically studied by a combination of spectroscopic techniques. In our comprehensive analysis, the ultrafast relaxation dynamics of hanging hydroxy groups can be univocally assigned to CaOH or SiOH environments, and the local chemical environment largely affects the H-bond network of the solvation water. Interestingly, the ordered "ice-like" solvation water found in the SiOH-rich environments is converted to a disordered "liquid-like" distribution in the CaOH-rich environment. This refined picture of the dynamics of confined water and hydroxy groups in calcium silicate hydrates can also be applied to other water-containing materials, with a significant impact in many fields of materials science.


Assuntos
Silicatos , Água , Compostos de Cálcio , Minerais
7.
Materials (Basel) ; 13(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967263

RESUMO

To find materials with an appropriate response to THz radiation is key for the incoming THz technology revolution. Unfortunately, this region of the electromagnetic spectra remains largely unexplored in most materials. The present work aims at unveiling the most significant THz fingerprints of cement-based materials. To this end transmission experiments have been carried out over Ordinary Portland Cement (OPC) and geopolymer (GEO) binder cement pastes in combination with atomistic simulations. These simulations have calculated for the first time, the dielectric response of C-S-H and N-A-S-H gels, the most important hydration products of OPC and GEO cement pastes respectively. Interestingly both the experiments and simulations reveal that both varieties of cement pastes exhibit three main characteristic peaks at frequencies around ~0.6 THz, ~1.05 THz and ~1.35 THz, whose origin is governed by the complex dynamic of their water content, and two extra signals at ~1.95 THz and ~2.75 THz which are likely related to modes involving floppy parts of the dried skeleton.

8.
Materials (Basel) ; 13(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936238

RESUMO

Understanding the mechanisms that govern the conductive properties of multifunctional cement-materials is fundamental for the development of the new applications proposed to enhance the energy efficiency, safety and structural properties of smart buildings and infrastructures. Many fillers have been suggested to increase the electrical conduction in concretes; however, the processes involved are still not entirely known. In the present work, we investigated the effect of graphene nanoplatelets (1 wt% on the electrical properties of cement composites (OPC/GNPs). We found a decrease of the bulk resistivity in the composite associated to the enhancement of the charge transport properties in the sample. Moreover, the study of the dielectric properties suggests that the main contribution to conduction is given by water diffusion through the porous network resulting in ion conductivity. Finally, the results support that the increase of direct current in OPC/GNPs is due to pore refinement induced by graphene nanoplatelets.

9.
Sci Rep ; 7(1): 8258, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811588

RESUMO

The dynamics of water confined in cement materials is still a matter of debate in spite of the fact that water has a major influence on properties such as durability and performance. In this study, we have investigated the dynamics of water confined in Portland cement (OPC) at different curing ages (3 weeks and 4 years after preparation) and at three water-to-cement ratios (w/c, 0.3, 0.4 and 0.5). Using broadband dielectric spectroscopy, we distinguish four different dynamics due to water molecules confined in the pores of different sizes of cements. Here we show how water dynamics is modified by the evolution in the microstructure (maturity) and the w/c ratio. The fastest dynamics (processes 1 and 2, representing very local water dynamics) are independent of water content and the degree of maturity whereas the slowest dynamics (processes 3 and 4) are dependent on the microstructure developed during curing. Additionally, we analyze the differences regarding the water dynamics when confined in synthetic C-S-H gel and in the C-S-H of Portland cement.

10.
J Phys Chem B ; 117(7): 2026-31, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23294006

RESUMO

The coherent excitations of DNA hydration water at 100 K have been investigated by neutron scattering spectroscopy to extract the excess signal of D(2)O-hydrated DNA with respect to dry DNA samples. A structural characterization of the sample, through the analysis of the static structure factor, has suggested that DNA hydration water is largely in an amorphous state up to high hydration degree, with only a small contribution coming from slightly deformed crystalline ice. To describe the inelastic spectra of DNA hydration water, we exploited a phenomenological model already applied in similar disordered systems, such as bulk water (Sacchetti et al. Phys. Rev. E2004, 69, 061203; Petrillo et al. Phys. Rev. E2000, 62, 3611-3618; Sette et al. Phys. Rev. Lett.1996, 77, 83-86) and protein hydration water (Orecchini et al. J. Am. Chem. Soc.2009, 131, 4664-4669). Over the low-energy range, the coherent dynamics of DNA hydration water is characterized by a branch at about 7.5 meV, a value slightly larger than that of bulk water. An additional mode in the energy range 20-35 meV is found, with a wavevector dependence seemingly connected with the structural features of amorphous ice. The ensemble of the results supports the glassy nature of DNA hydration water.


Assuntos
DNA/química , Água/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...