Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38194713

RESUMO

Synthesis of Mo2C bare MXenes, without surface terminations groups, via chemical vapor deposition (CVD) on metal foils is scientifically a very intriguing crystal growth process, and there are still challenges and limited fundamental understanding to overcome to obtain high yield and wide crystal size lateral growth. Achieving large area coverage via direct growth is scientifically vital to utilize the full potential of their unique properties in different applications. In this study, we sought to expand the boundaries of the current CVD growth approach for Mo2C MXenes and gain insights into the possibilities and limitations of large area growth, with a particular focus on controlling Mo concentration. We report a facile modification of their typical CVD growth protocol and show its influence on the Mo2C synthesis, with growth times spanning up to 3 h. Specifically, prior to initiating the CVD growth process, we introduced a holding step in temperature at 1095 °C. This proved to be beneficial in increasing the Mo concentration on the liquid Cu growth surface. We achieved an average Mo2C crystals coverage of approximately 50% of the growth substrate area, increased tendency of coalescence and merging of individual flakes, and lateral flake sizes up to 170µm wide. To gain deeper understanding into their CVD growth behavior, we conducted a systematic investigation of the effect of several factors, including (i) a holding step time on Mo diffusion rate through molten Cu, (ii) the Cu foil thickness over the Mo foil, and (iii) the CVD growth time. Phase, chemical and microstructural characterization by x-ray diffraction, x-ray photon spectroscopy, SEM and scanning/transmission electron microscopy revealed that the grown crystals are single phaseα-Mo2C. Furthermore, insights gained from this study sheds light on crucial factors and inherent limitations that are essential to consider and may help guide future research progress in CVD growth of bare MXenes.

2.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363233

RESUMO

Composite silica-titania waveguide films of refractive index ca. 1.8 are fabricated on glass substrates using a sol-gel method and dip-coating technique. Tetraethyl orthosilicate and tetraethyl orthotitanate with molar ratio 1:1 are precursors. Fabricated waveguides are annealed at 500 °C for 60 min. Their optical properties are studied using ellipsometry and UV-Vis spectrophotometry. Optical losses are determined using the streak method. The material structure and chemical composition, of the silica-titania films are analyzed using transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS), respectively. The surface morphology was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods. The results presented in this work show that the waveguide films are amorphous, and their parameters are stable for over a 13 years. The optical losses depend on their thickness and light polarization. Their lowest values are less than 0.06 dB cm-1. The paper presents the results of theoretical analysis of scattering losses on nanocrystals and pores in the bulk and interfaces of the waveguide film. These results combined with experimental data clearly indicate that light scattering at the interface to a glass substrate is the main source of optical losses. Presented waveguide films are suitable for application in evanescent wave sensors.

3.
ACS Omega ; 7(28): 24777-24784, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874245

RESUMO

Due to the antisurfactant properties of arsenic atoms, the self-induced dodecagonal GaN microrods can be grown by molecular beam epitaxy (MBE) in Ga-rich conditions. Since temperature is a key parameter in MBE growth, the role of temperature in the growth of GaN microrods is investigated. The optimal growth temperature window for the formation of GaN microrods is observed to be between 760 and 800 °C. Lowering the temperature to 720 °C did not change the growth mechanism, but the population of irregular and amorphous microrods increased. On the other hand, increasing the growth temperature up to 880 °C interrupts the growth of GaN microrods, due to the re-evaporation of the gallium from the surface. The incorporation of As in GaN microrods is negligible, which is confirmed by X-ray diffraction and transmission electron microscopy. Moreover, the photoluminescence and cathodoluminescence characteristics typical for GaN are observed for individual GaN microrods, which additionally confirms that arsenic is not incorporated inside microrods. When the growth temperature is increased, the emission related to the band gap decreases in favor of the defect-related emission. This is typical for bulk GaN and attributed to an increase in the point defect concentration for GaN microrods grown at lower temperatures.

4.
ACS Appl Mater Interfaces ; 14(4): 6131-6137, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043636

RESUMO

Hexagonal boron nitride (h-BN), together with other members of the van der Waals crystal family, has been studied for over a decade, both in terms of fundamental and applied research. Up to now, the spectrum of h-BN-based devices has broadened significantly, and systems containing the h-BN/III-V junctions have gained substantial interest as building blocks in, inter alia, light emitters, photodetectors, or transistor structures. Therefore, the understanding of electronic phenomena at the h-BN/III-V interfaces becomes a question of high importance regarding device engineering. In this study, we present the investigation of electronic phenomena at the h-BN/GaN interface by means of contactless electroreflectance (CER) spectroscopy. This nondestructive method enables precise determination of the Fermi level position at the h-BN/GaN interface and the investigation of carrier transport across the interface. CER results showed that h-BN induces an enlargement of the surface barrier height at the GaN surface. Such an effect translates to Fermi level pinning deeper inside the GaN band gap. As an explanation, we propose a mechanism based on electron transfer from GaN surface states to the native acceptor states in h-BN. We reinforced our findings by thorough structural characterization and demonstration of the h-BN/GaN Schottky diode. The surface barriers obtained from CER (0.60 ± 0.09 eV for GaN and 0.91 ± 0.12 eV for h-BN/GaN) and electrical measurements are consistent within the experimental accuracy, proving that CER is an excellent tool for interfacial studies of 2D/III-V hybrids.

5.
Small ; 16(29): e2001484, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32529718

RESUMO

2D intrinsic ferromagnetic materials are highly anticipated in spintronic devices due to their coveted 2D limited magnetism. However, 2D non-layered intrinsic ferromagnets have received sporadic attention, which is largely attributed to the fact that their synthesis is still a great challenge. Significantly, manganese phosphide (MnP) is a promising non-layered intrinsic ferromagnet with excellent properties. Herein, high-quality 2D MnP single crystals formed over liquid metal tin (Sn) is demonstrated through a facile chemical vapor deposition technique. The introduction of liquid metal Sn provides a fertile ground for the growth of 2D MnP single crystals. Interestingly, 2D MnP single crystals maintain their intrinsic ferromagnetism and exhibit a Curie temperature above room temperature. The research enriches the diversity of 2D intrinsic ferromagnetic materials, opening up opportunities for further exploration of their unique properties and rich applications.

6.
RSC Adv ; 10(9): 5026-5031, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498303

RESUMO

An all-oxide thermoelectric generator for high-temperature operation depends on a low electrical resistance of the direct p-n junction. Ca3Co4-x O9+δ and CaMnO3-δ exhibit p-type and n-type electronic conductivity, respectively, and the interface between these compounds is the material system investigated here. The effect of heat treatment (at 900 °C for 10 h in air) on the phase and element distribution within this p-n junction was characterized using advanced transmission electron microscopy combined with X-ray diffraction. The heat treatment resulted in counter diffusion of Ca, Mn and Co cations across the junction, and subsequent formation of a Ca3Co1+y Mn1-y O6 interlayer, in addition to precipitation of Co-oxide, and accompanying diffusion and redistribution of Ca across the junction. The Co/Mn ratio in Ca3Co1+y Mn1-y O6 varies and is close to 1 (y = 0) at the Ca3Co1+y Mn1-y O6-CaMnO3-δ boundary. The existence of a wide homogeneity range of 0 ≤ y ≤ 1 for Ca3Co1+y Mn1-y O6 is corroborated with density functional theory (DFT) calculations showing a small negative mixing energy in the whole range.

7.
J Phys Condens Matter ; 30(7): 075702, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363624

RESUMO

Cuprous oxide (Cu2O) is a promising material for large scale photovoltaic applications. The efficiencies of thin film structures are, however, currently lower than those for structures based on Cu2O sheets, possibly due to their poorer transport properties. This study shows that post-deposition rapid thermal annealing (RTA) of Cu2O films is an effective approach for improving carrier transport in films prepared by reactive magnetron sputtering. The as-deposited Cu2O films were poly-crystalline, p-type, with weak near band edge (NBE) emission in photoluminescence spectra, a grain size of ~100 nm and a hole mobility of 2-18 cm2 V-1 s-1. Subsequent RTA (3 min) at a pressure of 50 Pa and temperatures of 600-1000 °C enhanced the NBE by 2-3 orders of magnitude, evidencing improved crystalline quality and reduction of non-radiative carrier recombination. Both grain size and hole mobility were increased considerably upon RTA, reaching values above 1 µm and up to 58 cm2 V-1 s-1, respectively, for films annealed at 900-1000 °C. These films also exhibited a resistivity of ~50-200 Ω cm, a hole concentration of ~1015 cm-3 at room temperature, and a transmittance above 80%.

8.
Nano Lett ; 16(10): 6403-6410, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27683947

RESUMO

Aside from unusual properties of monolayer graphene, bilayer has been shown to have even more interesting physics, in particular allowing bandgap opening with dual gating for proper interlayer symmetry. Such properties, promising for device applications, ignited significant interest in understanding and controlling the growth of bilayer graphene. Here we systematically investigate a broad set of flow rates and relative gas ratio of CH4 to H2 in atmospheric pressure chemical vapor deposition of multilayered graphene. Two very different growth windows are identified. For relatively high CH4 to H2 ratios, graphene growth is relatively rapid with an initial first full layer forming in seconds upon which new graphene flakes nucleate then grow on top of the first layer. The stacking of these flakes versus the initial graphene layer is mostly turbostratic. This growth mode can be likened to Stranski-Krastanov growth. With relatively low CH4 to H2 ratios, growth rates are reduced due to a lower carbon supply rate. In addition bi-, tri-, and few-layer flakes form directly over the Cu substrate as individual islands. Etching studies show that in this growth mode subsequent layers form beneath the first layer presumably through carbon radical intercalation. This growth mode is similar to that found with Volmer-Weber growth and was shown to produce highly oriented AB-stacked materials. These systematic studies provide new insight into bilayer graphene formation and define the synthetic range where gapped bilayer graphene can be reliably produced.

10.
Small ; 11(5): 515-42, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25408379

RESUMO

The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented.


Assuntos
Eletricidade , Grafite/química , Microscopia Eletrônica de Transmissão/métodos , Elétrons , Nanotubos de Carbono/química
11.
Nano Lett ; 14(5): 2387-93, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24738656

RESUMO

The decrease of thermal conductivity is crucial for the development of efficient thermal energy converters. Systems composed of a periodic set of very thin layers show among the smallest thermal conductivities reported to-date. Here, we fabricate in an unconventional but straightforward way hybrid superlattices consisting of a large number of nanomembranes mechanically stacked on top of each other. The superlattices can consist of an arbitrary composition of n- or p-type doped single-crystalline semiconductors and a polycrystalline metal layer. These hybrid multilayered systems are fabricated by taking advantage of the self-rolling technique. First, differentially strained nanomembranes are rolled into three-dimensional microtubes with multiple windings. By applying vertical pressure, the tubes are then compressed and converted into a planar hybrid superlattice. The thermal measurements show a substantial reduction of the cross-sectional heat transport through the nanomembrane superlattice compared to a single nanomembrane layer. Time-domain thermoreflectance measurements yield thermal conductivity values below 2 W m(-1) K(-1). Compared to bulk values, this represents a reduction of 2 orders of magnitude by the incorporation of the mechanically joined interfaces. The scanning thermal atomic force microscopy measurements support the observation of reduced thermal transport on top of the superlattices. In addition, small defects with a spatial resolution of ∼100 nm can be resolved in the thermal maps. The low thermal conductivity reveals the potential of this approach to fabricate miniaturized on-chip solutions for energy harvesters in, e.g., microautonomous systems.

12.
Nano Lett ; 14(2): 799-805, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24467408

RESUMO

Despite significant advances in the synthesis of nanostructures, our understanding of the growth mechanisms of nanowires and nanotubes grown from catalyst particles remains limited. In this study we demonstrate a straightforward route to grow coaxial amorphous B/BOx nanowires and BOx nanotubes using gold catalyst particles inside a transmission electron microscope at room temperature without the need of any specialized or expensive accessories. Exceedingly high growth rates (over 7 µm/min) are found for the coaxial nanowires, and this is attributed to the highly efficient diffusion of B species along the surface of a nanowire by electrostatic repulsion. On the other hand the O species are shown to be relevant to activate the gold catalysts, and this can occur through volatile O species. The technique could be further developed to study the growth of other nanostructures and holds promise for the room temperature growth of nanostructures as a whole.

13.
Nanoscale ; 6(2): 889-96, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24270801

RESUMO

Often synthetic graphene requires transfer onto an arbitrary substrate prior to use because the substrate it was originally synthesized on is inappropriate for either electrical measurement or characterization. While a variety of routes have been developed they are substrate dependant and often involve the use of harsh treatments. Here we present a facile and cheap route that can be applied to graphene over any substrate. This universal transfer route is based on a wet chemical reaction producing gaseous species which can intercalate between the substrate and the graphene and thus gently delaminate the two.

14.
ACS Nano ; 7(1): 385-95, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23244231

RESUMO

van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 µm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.


Assuntos
Óxido de Alumínio/química , Cristalização/métodos , Grafite/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Catálise , Simulação por Computador , Gases/química , Teste de Materiais , Metais/química , Tamanho da Partícula , Eletricidade Estática
15.
Nano Lett ; 13(1): 213-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23245385

RESUMO

We fabricate inorganic thin film transistors with bending radii of less than 5 µm maintaining their high electronic performance with on-off ratios of more than 10(5) and subthreshold swings of 160 mV/dec. The fabrication technology relies on the roll-up of highly strained semiconducting nanomembranes, which compacts planar transistors into three-dimensional tubular architectures opening intriguing potential for microfluidic applications. Our technique probes the ultimate limit for the bending radius of high performance thin film transistors.

16.
ACS Nano ; 6(11): 10327-34, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23110721

RESUMO

Electron beams in transmission electron microscopes are very attractive to engineer and pattern graphene toward all-carbon device fabrication. The use of condensed beams typically used for sequential raster imaging is particularly exciting since they potentially provide high degrees of precision. However, technical difficulties, such as the formation of electron beam induced deposits on sample surfaces, have hindered the development of this technique. We demonstrate how one can successfully use a condensed electron beam, either with or without C(s) correction, to structure graphene with sub-nanometer precision in a programmable manner. We further demonstrate the potential of the developed technique by combining it with an established route to engineer graphene nanoribbons to single-atom carbon chains.


Assuntos
Cristalização/métodos , Grafite/química , Grafite/efeitos da radiação , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Elétrons , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
17.
Nanotechnology ; 23(3): 035601, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22173480

RESUMO

The pulsed-laser evaporation synthesis of silica nanofibers and crystalline binary nanoparticles is investigated in detail. By careful adjustment of the synthesis parameters one can tailor the product to form high yield nanofibers or binary nanoparticles. Some control on their diameters is also possible through the synthesis parameters. Oxidation of the nanofibers occurs upon exposure to air after the reaction.

18.
Nanoscale ; 2(10): 2077-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20714658

RESUMO

We present in situ experimental observations of fullerenes seamlessly fusing to single-walled carbon nanotubes. The morphing-entry of a fullerene to the interior of a nanotube is also captured. The confined (1D) motion of the newly-encapsulated fullerene within its host attests to the actual change from the exterior to interior.


Assuntos
Fulerenos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Química/métodos , Elétrons , Endocitose , Teste de Materiais , Microscopia Eletrônica de Transmissão/métodos , Movimento
19.
Chemistry ; 16(38): 11753-9, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20799304

RESUMO

The interaction of single-walled carbon nanotubes (SWCNTs) and α-sexithiophene (6T) was studied by Raman spectroscopy and by in situ Raman spectroelectrochemistry. The encapsulation of 6T in SWCNT and its interaction causes a bleaching of its photoluminescence, and also small shifts of its Raman bands. The Raman features of the SWCNT with embedded 6T (6T-peapods) change in both intensity and frequency compared to those of pristine SWCNT, which is a consequence of a change of the resonant condition. Electrochemical doping demonstrated that the electrode potential applied to the SWCNT wall causes changes in the embedded 6T. The effects of electrochemical charging on the Raman features of pristine SWCNT and 6T@SWCNT were compared. It is shown that the interaction of SWCNT with 6T also changes the electronic structure of SWCNT in its charged state. This change of electronic structure is demonstrated both for semiconducting and metallic tubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...