Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0252927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138895

RESUMO

Theoretically, small molecule CDK4/6 inhibitors (CDK4/6is) represent a logical therapeutic option in non-small cell lung cancers since most of these malignancies have wildtype RB, the key target of CDKs and master regulator of the cell cycle. Unfortunately, CDK4/6is are found to have limited clinical activity as single agents in non-small cell lung cancer. To address this problem and to identify effective CDK4/6i combinations, we screened a library of targeted agents for efficacy in four non-small cell lung cancer lines treated with CDK4/6 inhibitors Palbociclib or Abemaciclib. The pan-PAK (p21-activated kinase) inhibitor PF03758309 emerged as a promising candidate with viability ratios indicating synergy in all 4 cell lines and for both CDK4/6is. It is noteworthy that the PAKs are downstream effectors of small GTPases Rac1 and Cdc42 and are overexpressed in a wide variety of cancers. Individually the compounds primarily induced cell cycle arrest; however, the synergistic combination induced apoptosis, accounting for the synergy. Surprisingly, while the pan-PAK inhibitor PF03758309 synergizes with CDK4/6is, no synergy occurs with group I PAK inhibitors FRAX486 or FRAX597. Cell lines treated only with Ribociclib, FRAX486 or FRAX597 underwent G1/G0 arrest, whereas combination treatment with these compounds predominantly resulted in autophagy. Combining high concentrations of FRAX486, which weakly inhibits PAK4, and Ribociclib, mimics the autophagy and apoptotic effect of PF03758309 combined with Ribociclib. FRAX597, a PAKi that does not inhibit PAK4 did not reduce autophagy in combination with Ribociclib. Our results suggest that a unique combination of PAKs plays a crucial role in the synergy of PAK inhibitors with CDK4/6i. Targeting this unique PAK combination, could greatly improve the efficacy of CDK4/6i and broaden the spectrum of cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Piridinas/farmacologia
2.
FEBS Open Bio ; 9(10): 1689-1704, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314158

RESUMO

Lung cancer patients with mutations in epidermal growth factor receptor (EGFR) benefit from treatments targeting tyrosine kinase inhibitors (TKIs). However, both intrinsic and acquired resistance of tumors to TKIs are common, and EGFR variants have been identified that are resistant to multiple TKIs. In the present study, we characterized selected EGFR variants previously observed in lung cancer patients and expressed in a murine bone marrow pro-B Ba/F3 cell model. Among these EGFR variants, we report that an exon 20 deletion/insertion mutation S768insVGH is resistant to erlotinib (a first-generation TKI), but sensitive to osimertinib (a third-generation TKI). We also characterized a rare exon 21 germline variant, EGFR P848L, which transformed Ba/F3 cells and conferred resistance to multiple EGFR-targeting TKIs. Our analysis revealed that P848L (a) does not bind erlotinib; (b) is turned over less rapidly than L858R (a common tumor-derived EGFR mutation); (c) is not autophosphorylated at Tyr 1045 [the major docking site for Cbl proto-oncogene (c-Cbl) binding]; and (d) does not bind c-Cbl. Using viability assays including 300 clinically relevant targeted compounds, we observed that Ba/F3 cells transduced with EGFR P848L, S768insVGH, or L858R have very different drug-sensitivity profiles. In particular, EGFR P848L, but not L858R or S768insVGH, was sensitive to multiple Janus kinase 1/2 inhibitors. In contrast, cells driven by L858R, but not by P848L, were sensitive to multikinase MAPK/extracellular-signal-regulated kinase (ERK) kinase and ERK inhibitors including EGFR-specific TKIs. These observations suggest that continued investigation of rare TKI-resistant EGFR variants is warranted to identify optimal treatments for cancer.


Assuntos
Modelos Animais de Doenças , Variação Genética/genética , Neoplasias Pulmonares/genética , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Nitrilas , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Pirazóis/farmacologia , Pirimidinas/farmacologia
3.
PLoS One ; 13(11): e0207483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30452490

RESUMO

Prediction of lung cancer metastasis relies on post-resection assessment of tumor histology, which is a severe limitation since only a minority of lung cancer patients are diagnosed with resectable disease. Therefore, characterization of metastasis-predicting biomarkers in pre-resection small biopsy specimens is urgently needed. Here we report a biomarker consisting of the phosphorylation of the retinoblastoma protein (Rb) on serine 249 combined with elevated p39 expression. This biomarker correlates with epithelial-to-mesenchymal transition traits in non-small cell lung carcinoma (NSCLC) cells. Immunohistochemistry staining of NSCLC tumor microarrays showed that strong phospho-Rb S249 staining positively correlated with tumor grade specifically in the squamous cell carcinoma (SCC) subtype. Strong immunoreactivity for p39 positively correlated with tumor stage, lymph node invasion, and distant metastases, also in SCC. Linear regression analyses showed that the combined scoring for phospho-Rb S249, p39 and E-cadherin in SCC is even more accurate at predicting tumor staging, relative to each score individually. We propose that combined immunohistochemistry staining of NSCLC samples for Rb phosphorylation on S249, p39, and E-cadherin protein expression could aid in the assessment of tumor staging and metastatic potential when tested in small primary tumor biopsies. The intense staining for phospho-Rb S249 that we observed in high grade SCC could also aid in the precise sub-classification of poorly differentiated SCCs.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas do Citoesqueleto/biossíntese , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteína do Retinoblastoma/metabolismo , Biomarcadores Tumorais/genética , Caderinas/biossíntese , Caderinas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adesão Celular/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Gradação de Tumores , Metástase Neoplásica , Fosforilação , Proteína do Retinoblastoma/genética
4.
J Thorac Oncol ; 12(12): 1851-1856, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28911955

RESUMO

INTRODUCTION: To address the lack of genomic data from Hispanic/Latino (H/L) patients with lung cancer, the Latino Lung Cancer Registry was established to collect patient data and biospecimens from H/L patients. METHODS: This retrospective observational study examined lung cancer tumor samples from 163 H/L patients, and tumor-derived DNA was subjected to targeted-exome sequencing (>1000 genes, including EGFR, KRAS, serine/threonine kinase 11 gene [STK11], and tumor protein p53 gene [TP53]) and ancestry analysis. Mutation frequencies in this H/L cohort were compared with those in a similar cohort of non-Hispanic white (NHW) patients and correlated with ancestry, sex, smoking status, and tumor histologic type. RESULTS: Of the adenocarcinomas in the H/L cohort (n = 120), 31% had EGFR mutations, versus 17% in the NHW control group (p < 0.001). KRAS (20% versus 38% [p = 0.002]) and STK11 (8% versus 16% [p = 0.065]) mutations occurred at lower frequency, and mutations in TP53 occurred at similar frequency (46% versus 40% [p = 0.355]) in H/L and NHW patients, respectively. Within the Hispanic cohort, ancestry influenced the rate of TP53 mutations (p = 0.009) and may have influenced the rate of EGFR, KRAS, and STK11 mutations. CONCLUSIONS: Driver mutations in H/L patients with lung adenocarcinoma differ in frequency from those in NHW patients associated with their indigenous American ancestry. The spectrum of driver mutations needs to be further assessed in the H/L population.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Feminino , Hispânico ou Latino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...