Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(11): 4525-4532, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36881741

RESUMO

The reaction of [(p-cymene)RuCl2]2 with the triphosphine ligand bis(2-di-tert-butylphosphinophenyl)phosphine (tBuPHPP) results in an unusual exchange reaction in which a chloride ligand and a phosphorus-bound H atom are exchanged ("H-P/Ru-Cl exchange") to give the (chlorophosphine)ruthenium hydride complex (tBuPClPP)RuHCl [1Cl-HCl; tBuPClPP = bis(2-di-tert-butylphosphinophenyl)chlorophosphine]. Density functional theory calculations indicate that the presumed initial product of metalation, (tBuPHPP)RuCl2 (1H-Cl2), undergoes an H-P/Ru-Cl exchange via sequential P-to-Ru α-H migration to give the intermediate (tBuPPP)RuHCl2, followed by Ru-to-P α-Cl migration to give the observed product 1Cl-HCl (crystallographically characterized). Dehydrochlorination of 1Cl-HCl under a H2 atmosphere gives (tBuPClPP)RuH4 (1Cl-H4), which then can undergo a second dehydrochlorination and addition of H2 to give (tBuPHPP)RuH4 (1H-H4). This reaction may proceed via the reverse of the intramolecular exchange by 1H-Cl2, i.e., loss of H2 from 1Cl-H4 to give 1Cl-H2, which could undergo Cl-P/Ru-H exchange to give (tBuPHPP)RuHCl (1H-HCl). Accordingly, the thermodynamics of Cl-P/Ru-H exchange are found to be highly dependent on the nature of the ancillary anionic ligand (H or Cl), which is not directly involved in the exchange. The origin of this thermodynamic dependence can be explained in terms of the high stability of complexes (RPXPP)RuHCl (X = H, Cl; R = Me, tBu), in which the hydride is approximately trans to a vacant coordination site and the central phosphine group is approximately trans to the weak-trans-influence chloride ligand. This conclusion has general implications for five-coordinate d6 complexes, both pincer- and nonpincer-ligated.

2.
J Am Chem Soc ; 144(9): 4133-4146, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35224972

RESUMO

The selective functionalization of alkanes and alkyl groups is a major goal of chemical catalysis. Toward this end, a bulky triphosphine with a central secondary phosphino group, bis(2-di-t-butyl-phosphinophenyl)phosphine (tBuPHPP), has been synthesized. When complexed to iridium, it adopts a meridional ("pincer") configuration. The secondary phosphino H atom can undergo migration to iridium to give an anionic phosphido-based-pincer (tBuPPP) complex. Stoichiometric reactions of the (tBuPPP)Ir complexes reflect a distribution of steric bulk around the iridium center in which the coordination site trans to the phosphido group is quite crowded; one coordination site cis to the phosphido is even more crowded; and the remaining site is particularly open. The (tBuPPP)Ir precursors are the most active catalysts reported to date for dehydrogenation of n-alkanes, by about 2 orders of magnitude. The electronic properties of the iridium center are similar to that of well-known analogous (RPCP)Ir catalysts. Accordingly, DFT calculations predict that (tBuPPP)Ir and (tBuPCP)Ir are, intrinsically, comparably active for alkane dehydrogenation. While dehydrogenation by (RPCP)Ir proceeds through an intermediate trans-(PCP)IrH2(alkene), (tBuPPP)Ir follows a pathway proceeding via cis-(PPP)IrH2(alkene), thereby circumventing unfavorable placement of the alkene at the bulky site trans to phosphorus. (tBuPPP)Ir and (tBuPCP)Ir, however, have analogous resting states: square planar (pincer)Ir(alkene). Alkene coordination at the crowded trans site is therefore unavoidable in the resting states. Thus, the resting state of the (tBuPPP)Ir catalyst is destabilized by the architecture of the ligand, and this is largely responsible for its unusually high catalytic activity.


Assuntos
Alcanos , Irídio , Alcenos , Catálise , Irídio/química , Ligantes , Fosfinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...