Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.573
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38765982

RESUMO

Microglia are innate CNS immune cells that play key roles in supporting key CNS functions including brain plasticity. We now report a previously unknown role for microglia in regulating neuroplasticity within spinal phrenic motor neurons, the neurons driving diaphragm contractions and breathing. We demonstrate that microglia regulate phrenic long-term facilitation (pLTF), a form of respiratory memory lasting hours after repetitive exposures to brief periods of low oxygen (acute intermittent hypoxia; AIH) via neuronal/microglial fractalkine signaling. AIH-induced pLTF is regulated by the balance between competing intracellular signaling cascades initiated by serotonin vs adenosine, respectively. Although brainstem raphe neurons release the relevant serotonin, the cellular source of adenosine is unknown. We tested a model in which hypoxia initiates fractalkine signaling between phrenic motor neurons and nearby microglia that triggers extracellular adenosine accumulation. With moderate AIH, phrenic motor neuron adenosine 2A receptor activation undermines serotonin-dominant pLTF; in contrast, severe AIH drives pLTF by a unique, adenosine-dominant mechanism. Phrenic motor neuron fractalkine knockdown, cervical spinal fractalkine receptor inhibition on nearby microglia, and microglial depletion enhance serotonin-dominant pLTF with moderate AIH but suppress adenosine-dominant pLTF with severe AIH. Thus, microglia play novel functions in the healthy spinal cord, regulating hypoxia-induced neuroplasticity within the motor neurons responsible for breathing.

3.
J Neurophysiol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691529

RESUMO

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude, known as inactivity-induced phrenic motor facilitation (iPMF). Facilitation also occurs transiently in inspiratory intercostal nerve activity following inactivity (iIMF). Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and relevant PKC isoform are unknown. Here, we used RNA interference to test the hypothesis that the atypical PKCζ isoform within phrenic motor neurons is necessary for iPMF, but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural siRNA injections were made in rats to knock down phrenic and intercostal motor neuron PKCζ mRNA (siPKCζ). Control rats received non-targeting siRNA (NTsi) or siPKCθ; PKCθ is required for other forms of respiratory motor plasticity. Phrenic nerve and external intercostal (T2) EMG activity were measured in anesthetized, mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e. neural apnea) from modest hypocapnia, or a similar duration without neural apnea (time control). Phrenic burst amplitude increased from baseline with NTsi (68±10%) and siPKCθ (57±8%) 60 min post-neural apnea versus time controls (-3±3%). In contrast, siPKCζ virtually abolished iPMF (5±4%). While iIMF was transient in all groups, siPKCζ attenuated iIMF 5 min post-neural apnea (50±21%) vs NTsi (97±22%) and siPKCθ (103±20%). Neural inactivity elevated phrenic, but not intercostal responses to hypercapnia--an effect blocked by siPKCζ. We conclude phrenic motor neuron PKCζ is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for transient iIMF.

4.
Exp Neurol ; : 114808, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750949

RESUMO

Low-dose (< 2 h/day), acute intermittent hypoxia (AIH) elicits multiple forms of serotonin-dependent phrenic motor plasticity and is emerging as a promising therapeutic strategy to restore respiratory and non-respiratory motor function after spinal cord injury (SCI). In contrast, high-dose (> 8 h/day), chronic intermittent hypoxia (CIH) undermines some forms of serotonin-dependent phrenic motor plasticity and elicits pathology. CIH is a hallmark of sleep disordered breathing, which is highly prevalent in individuals with cervical SCI. Interestingly, AIH and CIH preconditioning differentially impact phrenic motor plasticity. Although mechanisms of AIH-induced plasticity in the phrenic motor system are well-described in naïve rats, we know little concerning how these mechanisms are affected by chronic SCI or intermittent hypoxia preconditioning. Thus, in a rat model of chronic, incomplete cervical SCI (lateral spinal hemisection at C2 (C2Hx), we assessed serotonin type 2 A, 2B and 7 receptor expression in and near phrenic motor neurons and compared: 1) intact vs. chronically injured rats; and 2) the impact of preconditioning with varied "doses" of intermittent hypoxia (IH). While there were no effects of chronic injury or intermittent hypoxia alone, CIH affected multiple receptors in rats with chronic C2Hx. Specifically, CIH preconditioning (8 h/day; 28 days) increased serotonin 2 A and 7 receptor expression exclusively in rats with chronic C2Hx. Understanding the complex, context-specific interactions between chronic SCI and CIH and how this ultimately impacts phrenic motor plasticity is important as we leverage AIH-induced motor plasticity to restore breathing and other non-respiratory motor functions in people with chronic SCI.

5.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602028

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Distrofina , Camundongos Endogâmicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Camundongos , Éxons/genética , Masculino , Fibrose , Fenótipo
7.
Vaccine ; 42(12): 2975-2982, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38570270

RESUMO

BACKGROUND: Pneumococcal carriage is the primary reservoir for transmissionand a prerequisite for invasive pneumococcal disease. Pneumococcal Conjugate Vaccine 13 (PCV13) showed a 62% efficacy in protection against experimental Streptococcus pneumoniae serotype 6B (Spn6B) carriage in a controlled human infection model (CHIM) of healthy Malawian adults. We, therefore, measured humoral responses to experimental challenge and PCV-13 vaccination and determined the association with protection against pneumococcal carriage. METHODS: We vaccinated 204 young, healthy Malawian adults with PCV13 or placebo and nasally inoculated them with Spn6B at least four weeks post-vaccination to establish carriage. We collected peripheral blood and nasal lining fluid at baseline, 4 weeks post-vaccination (7 days pre-inoculation), 2, 7, 14 and > 1 year post-inoculation. We measured the concentration of anti-serotype 6B Capsular Polysaccharide (CPS) Immunoglobulin G (IgG) and IgA antibodies in serum and nasal lining fluid using the World Health Organization (WHO) standardised enzyme-linked immunosorbent assay (ELISA). RESULTS: PCV13-vaccinated adults had higher serum IgG and nasal IgG/IgA anti-Spn6B CPS-specific binding antibodies than placebo recipients 4 to 6 weeks post-vaccination, which persisted for at least a year after vaccination. Nasal challenge with Spn6B did not significantly alter serum or nasal anti-CPS IgG binding antibody titers with or without experimental pneumococcal carriage. Pre-challenge titers of PCV13-induced serum IgG and nasal IgG/IgA anti-Spn6B CPS binding antibodies did not significantly differ between those that got experimentally colonised by Spn6B compared to those that did not. CONCLUSION: This study demonstrates that despite high PCV13 efficacy against experimental Spn6B carriage in young, healthy Malawian adults, robust vaccine-induced systemic and mucosal anti-Spn6B CPS binding antibodies did not directly relate to protection.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Adulto , Humanos , Lactente , Vacinas Conjugadas , Sorogrupo , Formação de Anticorpos , Imunoglobulina G , Imunoglobulina A/análise , Vacinas Pneumocócicas , Anticorpos Antibacterianos
8.
Nanoscale ; 16(17): 8618-8626, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606468

RESUMO

The self-assembly of thin films of block copolymers (BCPs) with perpendicular domain orientation offers a promising approach for nanopatterning on a variety of substrates, which is required by advanced applications such as ultrasmall transistors in integrated circuits, nanopatterned materials for tissue engineering, and electrocatalysts for fuel cell applications. In this study, we created BCPs with an A-b-(B-r-C) architecture that have blocks with equal surface energy (γair) and that can bind to the substrate, effectively creating a non-preferential substrate coating via self-brushing that enables the formation of through-film perpendicular domains in thin films of BCPs. We employed a thiol-epoxy click reaction to functionalize polystyrene-block-poly(glycidyl methacrylate) with a pair of thiols to generate an A-b-(B-r-C) BCP and tune γair of the B-r-C block. The secondary hydroxyl and thiol ether functionality generated by the click reaction was utilized to bind the BCP to the substrates. Scanning electron microscopy revealed that perpendicular orientation was achieved by simply annealing a thin film of the BCP on the bare substrate without the usual extra step of coating a random copolymer brush on the substrate. The self-brushing capability of the BCP was also examined on gold, platinum, titanium, aluminum nitride, and silicon nitride surfaces. These results demonstrate that self-brushing is a promising approach for achieving perpendicular domain orientation in thin films of BCP for nanopatterning on a variety of useful surfaces.

9.
Exp Physiol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551996

RESUMO

During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.

10.
J Neurotrauma ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38468543

RESUMO

Brief exposure to repeated episodes of low inspired oxygen, or acute intermittent hypoxia (AIH), is a promising therapeutic modality to improve motor function after chronic, incomplete spinal cord injury (SCI). Although therapeutic AIH is under extensive investigation in persons with SCI, limited data are available concerning cardiorespiratory responses during and after AIH exposure despite implications for AIH safety and tolerability. Thus, we recorded immediate (during treatment) and enduring (up to 30 min post-treatment) cardiorespiratory responses to AIH in 19 participants with chronic SCI (>1 year post-injury; injury levels C1 to T6; American Spinal Injury Association Impairment Scale A to D; mean age = 33.8 ± 14.1 years; 18 males). Participants completed a single AIH (15, 60-sec episodes, inspired O2 ≈ 10%; 90-sec intervals breathing room air) and Sham (inspired O2 ≈ 21%) treatment, in random order. During hypoxic episodes: (1) arterial oxyhemoglobin saturation decreased to 82.1 ± 2.9% (p < 0.001); (2) minute ventilation increased 3.83 ± 2.29 L/min (p = 0.008); and (3) heart rate increased 4.77 ± 6.82 bpm (p = 0.010). Considerable variability in cardiorespiratory responses was found among subjects; some individuals exhibited large hypoxic ventilatory responses (≥0.20 L/min/%, n = 11), whereas others responded minimally (<0.20 L/min/%, n = 8). Apneas occurred frequently during AIH and/or Sham protocols in multiple participants. All participants completed AIH treatment without difficulty. No significant changes in ventilation, heart rate, or arterial blood pressure were found 30 min post-AIH p > 0.05). In conclusion, therapeutic AIH is well tolerated, elicits variable chemoreflex activation, and does not cause persistent changes in cardiorespiratory control/function 30 min post-treatment in persons with chronic SCI.

11.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429578

RESUMO

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Assuntos
Neoplasias do Colo , Proteínas de Drosophila , Insulinas , Camundongos , Animais , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Drosophila/metabolismo , Dinâmica Mitocondrial , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Neoplasias do Colo/metabolismo , Insulinas/metabolismo , Lipídeos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
12.
JPEN J Parenter Enteral Nutr ; 48(4): 421-428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522007

RESUMO

BACKGROUND: During critical illness skeletal muscle wasting occurs rapidly. Although beta-hydroxy-beta-methylbutyrate (HMB) is a potential treatment to attenuate this process, the plasma appearance and muscle concentration is uncertain. METHODS: This was an exploratory study nested within a blinded, parallel group, randomized clinical trial in which critically ill patients after trauma received enteral HMB (3 g daily) or placebo. Plasma samples were collected at 0, 60, and 180 min after study supplement administration on day 1. Needle biopsies of the vastus lateralis muscle were collected (baseline and day 7 of the HMB treatment intervention period). An external standard curve was used to calculate HMB concentrations in plasma and muscle. RESULTS: Data were available for 16 participants (male n = 12 (75%), median [interquartile range] age 50 [29-58] years) who received placebo and 18 participants (male n = 14 (78%), age 49 [34-55] years) who received HMB. Plasma HMB concentrations were similar at baseline but increased after HMB (T = 60 min: placebo 0.60 [0.44-1.31] µM; intervention 51.65 [22.76-64.72] µM). Paired muscle biopsies were collected from 11 participants (placebo n = 7, HMB n = 4). Muscle HMB concentrations were similar at baseline between groups (2.35 [2.17-2.95]; 2.07 [1.78-2.31] µM). For participants in the intervention group who had the repeat biopsy within 4 h of HMB administration, concentrations were greater (7.2 and 12.3 µM) than those who had the repeat biopsy >4 h after HMB (2.7 and 2.1 µM). CONCLUSION: In this exploratory study, enteral HMB administration increased plasma HMB availability. The small sample size limits interpretation of the muscle HMB findings.


Assuntos
Estado Terminal , Nutrição Enteral , Músculo Esquelético , Valeratos , Humanos , Masculino , Pessoa de Meia-Idade , Valeratos/administração & dosagem , Estado Terminal/terapia , Adulto , Nutrição Enteral/métodos , Feminino , Ferimentos e Lesões/terapia , Ferimentos e Lesões/complicações , Atrofia Muscular/etiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38437797

RESUMO

PURPOSE: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by uncontrolled proliferation of granulocytes, caused the BCR-ABL1 fusion gene. While ocular manifestations of CML are rare, the presentations can range from asymptomatic to sudden vision loss. CML associated ocular findings that have been reported include retinal hemorrhages, leukemic infiltrates, and optic disc edema, but a rhegmatogenous retinal detachment (RRD) in the setting of CML has not been described. METHODS: Case report. RESULTS: A 21-year-old man presented with intermittent vision loss in his right eye, tinnitus in the right ear, and abdominal distension. Work up revealed significant leukocytosis, splenomegaly, and a positive BCR-ABL1 mutation. He was diagnosed with CML and started on systemic therapy. Exam of the right eye revealed a large intraocular mass. After two weeks of systemic treatment, the large elevation in the right eye had improved, allowing visualization of diffuse subretinal whitening. At follow up, an RRD secondary to an atrophic hole in an area of prior subretinal infiltrates were noted. He underwent repair with a scleral buckle. Postoperative course was complicated by redetachment with proliferative vitreoretinopathy, which led to an unrepairable detachment, despite multiple surgeries with silicone oil tamponade. CONCLUSIONS: Ocular findings related to CML are rare, with the lowest incidence when compared to other leukemias, and are associated with worse outcomes. Posterior segment findings include intraretinal hemorrhages, Roth spots, and retinal infiltrates. This unique case describes an RRD in CML retinopathy with an aggressive course and poor anatomical result.

15.
JCI Insight ; 9(8)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530354

RESUMO

Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1's essential role in maintaining muscle homeostasis.


Assuntos
Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Homeostase , Proteínas Musculares , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteínas Ligases SKP Culina F-Box , Peixe-Zebra , Animais , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Humanos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Retículo Endoplasmático/metabolismo , Dinâmica Mitocondrial
16.
Ann Surg Oncol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520583

RESUMO

BACKGROUND: Limb-sparing resections of thigh soft tissue sarcomas (STSs) can result in adverse outcomes. Identifying preoperative predictors for wound healing complications, tumor recurrence, and mortality is crucial for informed reconstructive decision-making. We hypothesized that preoperative measurements of thigh and tumor dimensions could serve as reliable indicators for postoperative complications, recurrence, and death. PATIENTS AND METHODS: In this retrospective cohort study conducted from March 2016 to December 2021, we analyzed patients undergoing thigh STS excisions followed by reconstruction. Preoperative magnetic resonance imaging or computed tomography scans provided necessary thigh and tumor dimensions. Univariate and multivariate regression assessed relationships between these dimensions and postoperative outcomes, including complications, recurrence, and death. RESULTS: Upon the analysis of 123 thighs, we found thigh width to be highly predictive of postoperative complications, even surpassing body mass index (BMI) and retaining significance in multivariate regression [odds ratio (OR) 1.19; 95% CI 1.03-1.39; p = 0.03]. Sarcoma-to-thigh width and thickness ratios predicted STS recurrence, with the thickness ratio retaining significance in multivariate regression (OR 1.03; 95% CI 1.001-1.05; p = 0.041). Notably, greater thigh thickness was independently protective against mortality in multivariate analysis (OR 0.80; 95% CI 0.65-0.98; p = 0.030). CONCLUSIONS: Thigh width outperformed BMI in association with postoperative complications. This may create an opportunity for intervention, where weight loss can play a role during the neoadjuvant therapy period to potentially reduce complications. Sarcoma-to-thigh width and thickness ratios, particularly the latter, hold substantial predictive value in terms of STS recurrence. Moreover, thigh thickness is an independent predictor of survival.

17.
Animal ; 18(3): 101103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442540

RESUMO

Red meat has been a critical part of human diets for millennia, providing a source of high-quality protein, micronutrients and essential fatty acids. However, as societies evolved and industrialisation reshaped our food systems, there has been a noticeable shift in meat-eating trends driven by concerns about the environmental impact of meat production and its potential risk to health. Yet, despite falling out of favour with some dietary experts and influencers, meat has an important role in a healthy diet and most adults still consume it. This article explores the nutritional value of red meat, authorised nutrition and health claims, how red meat fits into diet, providing the example of the United Kingdom (UK), and the health benefits and risks associated with both eating and avoiding red meat. Benefits of red meat include nutrient density and bioavailability while risks include colorectal cancer at high intakes of processed meats, based on observational studies. Benefits of meat-free diets include a lower risk of chronic diseases, based on observational studies, while risks include nutrient inadequacy, higher bone fracture risk and low protein quality. Hence, a wholesale shift to plant-based diets may not benefit adults who are vulnerable to sub-optimal nutrient intakes, such as women of child-bearing age and the elderly. More evidence from randomised controlled trials is recommended to fully understand the benefits and risks of both meat-containing and meat-free diets.


Assuntos
Estado Nutricional , Carne Vermelha , Humanos , Feminino , Animais , Dieta/veterinária , Carne , Valor Nutritivo
18.
JAMIA Open ; 7(1): ooae014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444986

RESUMO

Objectives: The goal of this study is to propose and test a scalable framework for machine learning (ML) algorithms to predict near-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases by incorporating and evaluating the impact of real-time dynamic public health data. Materials and Methods: Data used in this study include patient-level results, procurement, and location information of all SARS-CoV-2 tests reported in West Virginia as part of their mandatory reporting system from January 2021 to March 2022. We propose a method for incorporating and comparing widely available public health metrics inside of a ML framework, specifically a long-short-term memory network, to forecast SARS-CoV-2 cases across various feature sets. Results: Our approach provides better prediction of localized case counts and indicates the impact of the dynamic elements of the pandemic on predictions, such as the influence of the mixture of viral variants in the population and variable testing and vaccination rates during various eras of the pandemic. Discussion: Utilizing real-time public health metrics, including estimated Rt from multiple SARS-CoV-2 variants, vaccination rates, and testing information, provided a significant increase in the accuracy of the model during the Omicron and Delta period, thus providing more precise forecasting of daily case counts at the county level. This work provides insights on the influence of various features on predictive performance in rural and non-rural areas. Conclusion: Our proposed framework incorporates available public health metrics with operational data on the impact of testing, vaccination, and current viral variant mixtures in the population to provide a foundation for combining dynamic public health metrics and ML models to deliver forecasting and insights in healthcare domains. It also shows the importance of developing and deploying ML frameworks in rural settings.

19.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504132

RESUMO

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Assuntos
Alcaloides , Sarcopenia , Humanos , Masculino , Camundongos , Animais , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envelhecimento , Músculo Esquelético/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo
20.
FASEB J ; 38(3): e23459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329343

RESUMO

Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Imediatamente Precoces , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Angiogênese , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Imediatamente Precoces/genética , Luciferases , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...