Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 142830, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002655

RESUMO

The environmental ubiquity of tire and road wear particles (TRWP) underscores the need to understand the occurrence, persistence, and environmental effects of tire-related chemicals in aquatic ecosystems. One such chemical is 6PPD-quinone (6PPD-Q), a transformation product of the tire antioxidant 6PPD. In urban stormwater runoff 6PPD-Q can exceed acute toxicity thresholds for several salmonid species and is being implicated in significant coho salmon losses in the Pacific Northwest. There is a critical need to understand the prevalence of 6PPD-Q across watersheds to identify habitats heavily affected by TRWPs. We conducted a reconnaissance of 6PPD and 6PPD-Q in surface waters across the United States from sites (N=94) with varying land use (urban, agricultural, and forested) and streamflow to better understand stream exposures. A rapid, low-volume direct-inject, liquid chromatography mass spectrometry method was developed for the quantitation of 6PPD-Q and screening for 6PPD. Laboratory holding times, bottle material, headspace, and filter materials were investigated to inform best practices for 6PPD-Q sampling and analysis. Glass bottles with PTFE-lined caps minimized sorption and borosilicate glass fiber filters provided the highest recovery. 6PPD-Q was stable for at least 5 months in pure laboratory solutions and for 75 days at 5 °C with minimal headspace in the investigated surface water and stormwaters. Results also indicated samples can be frozen to extend holding times. 6PPD was not detected in any of the 526 analyzed samples and there were no detections of 6PPD-Q at agricultural or forested sites. 6PPD-Q was frequently detected in stormwater (57%, N=90) and from urban impacted sites (45%, N=276) with concentrations ranging from 0.002 to 0.29 µg/L. The highest concentrations, above the lethal level for coho salmon, occurred during stormwater runoff events. This highlights the importance of capturing episodic runoff events in urban areas near ecologically relevant habitat or nursery grounds for sensitive species.

2.
Environ Int ; 178: 108033, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356308

RESUMO

Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Estados Unidos , Humanos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Água , Laboratórios
3.
Environ Int ; 171: 107701, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542998

RESUMO

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Assuntos
Água Potável , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Estados Unidos , Abastecimento de Água , Exposição Ambiental/efeitos adversos , Poluentes Químicos da Água/análise
4.
Ecotoxicology ; 31(10): 1536-1553, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36454361

RESUMO

Decades of poor reproductive success and young-of-the-year survival, combined with adult mortality events, have led to a decline in the smallmouth bass (SMB; Micropterus dolomieu) population in sections of the Potomac River. Previous studies have identified numerous biologic and environmental stressors associated with negative effects on SMB health. To better understand the impact of these stressors, this study was conducted at the confluence of Antietam Creek and the Potomac River from 2013 to 2019 to identify temporal changes associated with SMB reproductive health. Surface water samples were collected and analyzed for over 300 organic contaminants, including pesticides, phytoestrogens, pharmaceuticals, hormones and total estrogenicity (E2Eq). Adult SMB were collected and sampled for multiple endpoints, including gene transcripts associated with reproduction (molecular), histopathology (cellular), and organosomatic indices (tissue). In males, biomarkers of estrogenic endocrine disruption, including testicular oocytes (TO) and plasma vitellogenin (Vtg) were assessed. Numerous agriculture-related contaminants or land use patterns were associated with gene transcript abundance in both male and female SMB. Positive associations between pesticides in the immediate catchment with TO severity and E2Eq with plasma Vtg in males were identified. In males, the prevalence of TO and detectable levels of plasma Vtg, liver vitellogenin transcripts (vtg) and testis vtg were high throughout the study. Peaks of complex mixtures of numerous contaminants occurred during the spring/early summer when spawning and early development occurs and to a lesser extent in fall/winter during recrudescence. Management practices to reduce exposure during these critical and sensitive periods may enhance reproductive health of these economically important sportfishes.


Assuntos
Saúde Reprodutiva , Feminino , Masculino , Animais
5.
Environ Monit Assess ; 194(1): 3, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862922

RESUMO

Smallmouth bass Micropterus dolomieu were sampled from three sites within the Lake Erie drainage (Elk Creek, Twentymile Creek, and Misery Bay, an embayment in Presque Isle Bay). Plasma, tissues for histopathological analyses, and liver and testes preserved in RNALater® were sampled from 30 smallmouth bass (of both sexes) at each site. Liver and testes samples were analyzed for transcript abundance with Nanostring nCounter® technology. Evidence of estrogenic endocrine disruption was assessed by the presence and severity of intersex (testicular oocytes; TO) and concentrations of plasma vitellogenin in male fish. Abundance of 17 liver transcripts associated with reproductive function, endocrine activity, and contaminant detoxification pathways and 40 testes transcripts associated with male and female reproductive function, germ cell development, and steroid biosynthesis were also measured. Males with a high rate of TO (87-100%) and plasma vitellogenin were noted at all sites; however, TO severity was greatest at the site with the highest agricultural land cover. Numerous transcripts were differentially regulated among the sites and patterns of transcript abundance were used to better understand potential risk factors for estrogenic endocrine disruption. The results of this study suggest endocrine disruption is prevalent in this region and further research would benefit to identify the types of contaminants that may be associated with the observed biological effects.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Feminino , Lagos , Masculino , Pennsylvania , Saúde Reprodutiva , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-34070836

RESUMO

Smallmouth bass Micropterus dolomieu is an economically important sportfish and within the Chesapeake Bay watershed has experienced a high prevalence of external lesions, infectious disease, mortality events, reproductive endocrine disruption and population declines. To date, no clear or consistent associations with contaminants measured in fish tissue or surface water have been found. Therefore, plasma samples from two sites in the Potomac River and two in the Susquehanna River drainage basins, differing in land-use characteristics, were utilized to determine if perfluoroalkyl substances were present. Four compounds, perfluorooctane sulphonic acid (PFOS), perfluoroundecanoic acid (PFUnA), perfluorodecanoic acid (PFDA) and perfluorododecanoic acid (PFDoA), were detected in every fish. Two additional compounds, perfluorooctane sulphonamide (PFOSA) and perfluorononanoic acid (PFNA), were less commonly detected at lower concentrations, depending on the site. Concentrations of PFOS (up to 574 ng/mL) were the highest detected and varied significantly among sites. No seasonal differences (spring versus fall) in plasma concentrations were observed. Concentrations of PFOS were not significantly different between the sexes. However, PFUnA and PFDoA concentrations were higher in males than females. Both agricultural and developed land-use appeared to be associated with exposure. Further research is needed to determine if these compounds could be affecting the health of smallmouth bass and identify sources.


Assuntos
Bass , Fluorocarbonos , Poluentes Químicos da Água , Animais , Baías , Feminino , Fluorocarbonos/análise , Masculino , Rios , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 774: 145687, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609846

RESUMO

If not managed properly, modern agricultural practices can alter surface and groundwater quality and drinking water resources resulting in potential negative effects on aquatic and terrestrial ecosystems. Exposure to agriculturally derived contaminant mixtures has the potential to alter habitat quality and negatively affect fish and other aquatic organisms. Implementation of conservation practices focused on improving water quality continues to increase particularly in agricultural landscapes throughout the United States. The goal of this study was to determine the consequences of land management actions on the primary drivers of contaminant mixtures in five agricultural watersheds in the Chesapeake Bay, the largest watershed of the Atlantic Seaboard in North America where fish health issues have been documented for two decades. Surface water was collected and analyzed for 301 organic contaminants to determine the benefits of implemented best management practices (BMPs) designed to reduce nutrients and sediment to streams in also reducing contaminants in surface waters. Of the contaminants measured, herbicides (atrazine, metolachlor), phytoestrogens (formononetin, genistein, equol), cholesterol and total estrogenicity (indicator of estrogenic response) were detected frequently enough to statistically compare to seasonal flow effects, landscape variables and BMP intensity. Contaminant concentrations were often positively correlated with seasonal stream flow, although the magnitude of this effect varied by contaminant across seasons and sites. Land-use and other less utilized landscape variables including biosolids, manure and pesticide application and percent phytoestrogen producing crops were inversely related with site-average contaminant concentrations. Increased BMP intensity was negatively related to contaminant concentrations indicating potential co-benefits of BMPs for contaminant reduction in the studied watersheds. The information gained from this study will help prioritize ecologically relevant contaminant mixtures for monitoring and contributes to understanding the benefits of BMPs on improving surface water quality to better manage living resources in agricultural landscapes inside and outside the Chesapeake Bay watershed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...