Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 12, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195585

RESUMO

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.


Assuntos
Quirópteros , Diabetes Mellitus , Humanos , Animais , Pâncreas , Rim , Células Epiteliais
3.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824791

RESUMO

Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.

4.
Aquat Toxicol ; 212: 88-97, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077970

RESUMO

Ionocytes are specialized cells in the epidermis of embryonic zebrafish (Danio rerio) that play important roles in ion homeostasis and have functional similarities to mammalian renal cells. Here, we examined whether these cells might also share another functional similarity with renal cells, which is the presence of efflux transporter activities useful for elimination of toxic small molecules. Xenobiotic transporters (XTs), including the ATP-Binding Cassette (ABC) family, are a major defense mechanism against diffusible toxic molecules in aquatic embryos, including zebrafish, but their activity in the ionocytes has not previously been studied. Using fluorescent small molecule substrates of XT, we observed that specific populations of ionocytes uptake and efflux fluorescent small molecules in a manner consistent with active transport. We specifically identified a P-gp/ABCB1 inhibitor-sensitive efflux activity in the H+-ATPase-rich (HR) ionocytes, and show that these cells exhibit enriched expression of the ABCB gene, abcb5. The results extend our understanding of the functional significance of zebrafish ionocytes and indicate that these cells could play an important role in protection of the fish embryo from harmful small molecules.


Assuntos
Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Xenobióticos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Ânions , Transporte Biológico , Epiderme/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...