Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002217

RESUMO

The adzuki bean (Vigna angularis), known for its rich nutritional composition, holds significant promise in addressing food and nutritional security, particularly for low socioeconomic classes and the predominantly vegetarian and vegan populations worldwide. In this study, we assessed a total of 100 diverse adzuki bean accessions, analyzing essential nutritional compounds using AOAC's official analysis procedures and other widely accepted standard techniques. Our analysis of variance revealed significant genotype variations for all the traits studied. The variability range among different traits was as follows: moisture: 7.5-13.3 g/100 g, ash: 1.8-4.2 g/100 g, protein: 18.0-23.9 g/100 g, starch: 31.0-43.9 g/100 g, total soluble sugar: 3.0-8.2 g/100 g, phytic acid: 0.65-1.43 g/100 g, phenol: 0.01-0.59 g/100 g, antioxidant: 11.4-19.7 mg/100 g GAE. Noteworthy accessions included IC341955 and EC15256, exhibiting very high protein content, while IC341957 and IC341955 showed increased antioxidant activity. To understand intertrait relationships, we computed correlation coefficients between the traits. Principal Component Analysis (PCA) revealed that the first four principal components contributed to 63.6% of the variation. Further, hierarchical cluster analysis (HCA) identified nutri-dense accessions, such as IC360533, characterized by high ash (>4.2 g/100 g) and protein (>23.4 g/100 g) content and low phytic acid (0.652 g/100 g). These promising compositions provide practical support for the development of high-value food and feed varieties using effective breeding strategies, ultimately contributing to improved global food security.

2.
PLoS One ; 17(1): e0262634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045093

RESUMO

Vigna stipulacea (Lam.) Kuntz., commonly known as Minni payaru is an underutilized legume species and has a great potential to be utilized as food crop. To evaluate and select the best germplasm to be harnessed in the breeding programme, we assessed the genetic diversity of V. stipulacea (94 accessions) conserved in the Indian National Genebank, based on morphological traits and microsatellite markers. Significant variation was recorded for the morphological traits studied. Euclidean distance using UPGMA method grouped all accessions into two major clusters. Accessions were identified for key agronomic traits such as, early flowering (IC331436, IC251436, IC331437); long peduncle length (IC553518, IC550531, IC553557, IC553540, IC550532, IC553564); and more number of seeds per pod (IC553529, IC622865, IC622867, IC553528). To analyse the genetic diversity among the germplasm 33 SSR primers were used anda total of 116 alleles were detected. The number of alleles varied from two to seven, with an average of 3.52 per loci. The polymorphic information content values varied from 0.20 to 0.74, with a mean of 0.40. The high number of alleles per locus and the allelic diversity in the studied germplasm indicated a relatively wider genetic base of V. stipulacea. Phylogenetic analysis clustered accessions into seven clades. Population structure analysis grouped them into five genetic groups, which were partly supported by PCoA and phylogenetic tree. Besides, PCoA and AMOVA also decoded high genetic diversity among the V. stipulacea accessions. Thus, morphological and microsatellite markers distinguished V. stipulacea accessions and assessed their genetic diversity efficiently. The identified promising accessions can be utilized in Vigna improvement programme through introgression breeding and/or can be used for domestication and enhanced utilization of V. stipulacea.


Assuntos
Vigna/citologia , Vigna/genética , Fabaceae/genética , Variação Genética/genética , Genótipo , Índia , Repetições de Microssatélites/genética , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo Genético/genética , Vigna/metabolismo
3.
Front Plant Sci ; 12: 766645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966400

RESUMO

Micronutrient malnutrition or hidden hunger is a serious challenge toward societal well-being. Vigna stipulacea (Lam.) Kuntz (known locally as Minni payaru), is an underutilized legume that has the potential to be a global food legume due to its rich nutrient profile. In the present study, 99 accessions of V. stipulacea were tested for iron (Fe), zinc (Zn), calcium (Ca), protein, and phytate concentrations over two locations for appraisal of stable nutrient-rich sources. Analysis of variance revealed significant effects of genotype for all the traits over both locations. Fe concentration ranged from 29.35-130.96 mg kg-1 whereas Zn concentration ranged from 19.44 to 74.20 mg kg-1 across both locations. The highest grain Ca concentration was 251.50 mg kg-1 whereas the highest grain protein concentration was recorded as 25.73%. In the case of grain phytate concentration, a genotype with the lowest value is desirable. IC622867 (G-99) was the lowest phytate containing accession at both locations. All the studied traits revealed highly significant genotypic variances and highly significant genotype × location interaction though less in magnitude than the genotypic variance. GGE Biplot analysis detected that, for grain Fe, Zn, and Ca concentration the 'ideal' genotypes were IC331457 (G-75), IC331610 (G-76), and IC553564 (G-60), respectively, whereas for grain protein concentration IC553521 (G-27) was the most "ideal type." For phytate concentration, IC351407 (G-95) and IC550523 (G-99) were considered as 'ideal' and 'desirable,' respectively. Based on the desirability index, Location 1 (Kanpur) was identified as ideal for Fe, Zn, Ca, and phytate, and for grain protein concentration, Location 2 (New Delhi) was the ideal type. A significant positive correlation was detected between grain Fe as well as grain Zn and protein concentration considering the pooled analysis over both the locations where as a significant negative association was observed between phytate and protein concentration over the locations. This study has identified useful donors and enhanced our knowledge toward the development of biofortified Vigna cultivars. Promoting domestication of this nutrient-rich semi-domesticated, underutilized species will boost sustainable agriculture and will contribute toward alleviating hidden hunger.

4.
Front Nutr ; 8: 826208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35281763

RESUMO

The genus Lathyrus consists of more than 184 herbaceous annual and perennial species suitable for multifaceted sustainable food and feed production system in the arid and semi-arid regions of the world. The grasspea is a promising source of protein nutrition. However, its potential is not being utilized fully due to the presence of neurotoxin content (ß-N-oxalyl-l-α, ß diaminopropionic acid, ß-ODAP), a causal agent of non-reversible lower limbs paralysis. The high protein contents in seeds and leaves with ~90% digestibility make it sustainable super food to beat protein malnutrition in future. Therefore, it is desired to breed new grasspea cultivars with low ß-ODAP contents. Limited research has been carried out to date about this feature. A draft genome sequence of grasspea has been recently published that is expected to play a vital role in breeding and identifying the genes responsible for biosynthesis pathway of ß-ODAP contents in grasspea. Efforts to increase awareness about the importance of genus Lathyrus and detoxify ß-ODAP in grasspea are desired and are in progress. Presently, in South Asia, systematic and dedicated efforts to support the farmers in the grasspea growing regions by disseminating low ß-ODAP varieties has resulted in a considerable improvement in reducing the incidence of neurolathyrism. It is expected that the situation will improve further by mainstreaming grasspea cultivation by implementing different approaches such as the development and use of low ß-ODAP varieties, strengthening government policies and improved detox methods. The present review provides insight into the multifaceted characteristics of sustainable nutritious grasspea in the global and Indian perspective.

5.
Front Plant Sci ; 12: 751429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154171

RESUMO

Lentil (Lens culinaris Medik.) is one of the major cool-season pulse crops worldwide. Its increasing demand as a staple pulse has led to the unlocking of diverse germplasm collections conserved in the genebanks to develop its superior varieties. The Indian National Genebank, housed at the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India, currently has 2,324 accessions comprising 1,796 indigenous and 528 exotic collections. This study was conducted to unveil the potential of lentil germplasm by assessing its agro-morphological characteristics and diversity, identifying trait-specific germplasm, and developing a core set. The complete germplasm set was characterized for two years, i.e., 2017-2018 and 2018-2019, and data were recorded on 26 agro-morphological traits. High phenotypic variability was observed for nine quantitative and 17 qualitative traits. A core set comprising 170 accessions (137 Indian and 33 exotic) was derived based on the characterization data as well as geographical origin using a heuristic method and PowerCore software. This core set was found to be sufficiently diverse and representative of the entire collection based on the comparison made using Shannon-Weaver diversity indices and χ2 test. These results were further validated by summary statistics. The core set displayed high genetic diversity as evident from a higher coefficient of variance in comparison to the entire set for individual traits and overall Shannon-Weaver diversity indices (entire: 1.054; core: 1.361). In addition, the total variation explained by the first three principal components was higher in the core set (70.69%) than in the entire collection (68.03%). Further, the conservation of pairwise correlation values among descriptors in the entire and core set reflected the maintenance of the structure of the whole set. Based on the results, this core set is believed to represent the entire collection, completely. Therefore, it constitutes a potential set of germplasm that can be used in the genetic enhancement of lentils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...