Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cannabis Res ; 6(1): 25, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778343

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation, demyelination and axonal loss. Cannabis, an immunomodulating agent, is known for its ability to treat MS effectively. However, due to variations in the profile of secondary metabolites, especially cannabinoids, among cannabis cultivars, the effectiveness of cannabis treatment can vary, with significant variability in the effects on different biological parameters. For screening available cultivars, cellular in vitro as well as pre-clinical in vivo assays, are required to evaluate the effectiveness of the wide range of chemical variability that exists in cannabis cultivars. This study evaluated comparatively three chemically diverse cannabis cultivars, CN2, CN4 and CN6, containing different ratios of phytocannabinoids, for their neuroinflammatory activity in MS model. MATERIALS AND METHODS: In vitro experiments were performed with lipopolysaccharide (LPS)-activated BV-2 microglia and primary glial cells to evaluate the effect of different cannabis cultivars on nitric oxide (NO) and inflammatory cytokines, as well as inducible nitric oxide synthase (iNOS) protein expression. An in vivo experiment using the experimental autoimmune encephalomyelitis (EAE) MS model was conducted using Myelin oligodendrocyte glycoprotein (MOG) as the activating peptide. The cannabis extracts of the cultivars CN2, CN4, CN6 or vehicle, were intraperitoneally injected with clinical scores given based on observed symptoms over the course of study. At the end of the experiment, the mice were sacrificed, and splenocyte cytokine secretion was measured using ELISA. Lumbar sections from the spinal cord of treated MS mice were evaluated for microglia, astrocytes and CD4+ cells. RESULTS: Extracts of the CN2 cultivar contained tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) without cannabidiol (CBD), and a number of monoterpenes. CN4 contained cannabidiolic acid (CBDA) and tetrahydrocannabidiolic acid (THCA), with significant amounts of THC: CBD in a 1:1 ratio, as well as sesquiterpenes and some monoterpenes; and CN6 contained primarily CBDA and THCA, as well as THC and CBD in a 2:1 ratio, with some sesquiterpenes and no monoterpenes. All extracts were not cytotoxic in glial cells up to 50 µg/ml. Dose dependent inhibition of LPS-induced BV2 as well as primary microglial NO secretion confirmed the anti-inflammatory and anti-oxidative activity of the three cannabis cultivars. CN2 but not CN4 reduced both astrocytosis and microglial activation in lumbar sections of EAE mice. In contrast, CN4 but not CN2 significantly decreased the secretion of TNFα and Interferon γ (IFNγ) in primary splenocytes extracted from EAE mice. CONCLUSIONS: While both cannabis cultivars, CN2 and CN4, significantly reduced the severity of the clinical signs throughout the course of the study, they modulated different inflammatory mediators and pathways, probably due to differences in their phytocannabinoid composition. This demonstrates the differential potential of cannabis cultivars differing in chemotype to regulate neuroinflammation and their potential to treat MS.

2.
Front Pharmacol ; 14: 1234332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663250

RESUMO

Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.

3.
Biomolecules ; 13(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830745

RESUMO

Multiple sclerosis (MS) is a widespread chronic neuroinflammatory and neurodegenerative disease. Microglia play a crucial role in the pathogenesis of MS via the release of cytokines and reactive oxygen species, e.g., nitric oxide. Research involving the role of phytocannabinoids in neuroinflammation is currently receiving much attention. Cannabigerol is a main phytocannabinoid, which has attracted significant pharmacological interest due to its non-psychotropic nature. In this research, we studied the effects of cannabigerol on microglial inflammation in vitro, followed by an in vivo study. Cannabigerol attenuated the microglial production of nitric oxide in BV2 microglia and primary glial cells; concomitant treatment of the cells with cannabigerol and telmisartan (a neuroprotective angiotensin receptor blocker) decreased nitric oxide production additively. Inducible nitric oxide synthase (iNOS) expression was also reduced by cannabigerol. Moreover, tumor necrosis factor-α (TNF-α), a major cytokine involved in MS, was significantly reduced by cannabigerol in both cell cultures. Next, we studied the effects of cannabigerol in vivo using a mice model of MS, experimental autoimmune encephalomyelitis (EAE). The clinical scores of EAE mice were attenuated upon cannabigerol treatment; additionally, lumbar sections of EAE mice showed enhanced neuronal loss (relative to control mice), which was restored by cannabigerol treatment. Altogether, the set of experiments presented in this work indicates that cannabigerol possesses an appealing therapeutic potential for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia
4.
Nutrients ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364811

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become an epidemic with increasing prevalence. Limited treatment options and poor adherence emphasize the urgent need for novel therapies for the treatment and/or prevention of NAFLD. Bioactive natural compounds found in medicinal plants are promising as novel therapeutic agents for NAFLD. Chiliadenus iphionoides, a medicinal plant with several health-promoting properties, is an encouraging candidate. The current study aimed to elucidate the metabolic effects of C. iphionoides consumption in a high-fat-diet (HFD)-induced model of NAFLD. Male C57BL/6J mice (n = 40, 7-8-week-old) were fed a HFD (60% fat) with/without 0.5 or 2.5 gr C. iphionoides for fifteen weeks. Diet supplementation with C. iphionoides significantly ameliorated HFD-induced weight gain. Likewise, liver and adipose tissue weights were profoundly lower in the C. iphionoides-fed groups. Reduced liver steatosis in those groups was corroborated by histology, plasma liver enzyme levels, and lipid profile, indicating improved liver function and lipid metabolism in addition to enhanced insulin sensitivity. The addition of C. iphionoides to an obesogeneic diet can beneficially alleviate metabolic alterations and may be a practicable strategy for the management of NAFLD.


Assuntos
Asteraceae , Hepatopatia Gordurosa não Alcoólica , Plantas Medicinais , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Metabolismo dos Lipídeos , Modelos Animais de Doenças , Aumento de Peso , Glucose/metabolismo , Lipídeos/farmacologia
5.
Plants (Basel) ; 11(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079576

RESUMO

Medicinal properties of plants are usually identified based on knowledge of traditional medicine or using low-throughput screens for specific pharmacological activities. The former is very biased since it requires prior knowledge of plants' properties, while the latter depends on a specific screening system and will miss medicinal activities not covered by the screen. We sought to enrich our understanding of the biological activities of Sarcopoterium spinosum L. root extract based on transcriptome changes to uncover a plurality of possible pharmacological effects without the need for prior knowledge or functional screening. We integrated Gene Set Enrichment Analysis of the RNAseq data to identify pathways affected by the treatment of cells with the extract and perturbational signatures in the CMAP database to enhance the validity of the results. Activities of signaling pathways were measured using immunoblotting with phospho-specific antibodies. Mitochondrial membrane potential was assessed using JC-1 staining. SARS-CoV-2-induced cell killing was assessed in Vero E6 and A549 cells using an MTT assay. Here, we identified transcriptome changes following exposure of cultured cells to the medicinal plant Sarcopoterium spinosum L. root extract. By integrating algorithms of GSEA and CMAP, we confirmed known anti-cancer activities of the extract and predicted novel biological effects on oxidative phosphorylation and interferon pathways. Experimental validation of these pathways uncovered strong activation of autophagy, including mitophagy, and excellent protection from SARS-CoV-2 infection. Our study shows that gene expression analysis alone is insufficient for predicting biological effects since some of the changes reflect compensatory effects, and additional biochemical tests provide necessary corrections. This study defines the advantages and limitations of transcriptome analysis in predicting the biological and medicinal effects of the Sarcopoterium spinosum L. extract. Such analysis could be used as a general approach for predicting the medicinal properties of plants.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35795290

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver abnormalities and has been linked with metabolic syndrome hallmarks. Unfortunately, current treatments are limited. This work aimed to elucidate the effects of three cannabis extracts on metabolic alteration and gut microbiota composition in a mouse model of NAFLD and obesity. Male mice were fed with a high-fat diet (HFD) for 12 weeks. Following the establishment of obesity, the HFD-fed group was subdivided into HFD or HFD that was supplemented with one of three cannabis extracts (CN1, CN2, and CN6) for additional 8 weeks. Metabolic parameters together with intestinal microbiota composition were evaluated. Except for several minor changes in gene expression, no profound metabolic effect was found due to cannabis extracts addition. Nevertheless, marked changes were observed in gut microbiota diversity and composition, with CN1 and CN6 exhibiting microbial abundance patterns that are associated with more beneficial outcomes. Taken together, specific cannabis extracts' addition to an HFD results in more favorable modifications in gut microbiota. Although no marked metabolic effect was disclosed, longer treatments duration and/or higher extracts concentrations may be needed. More research is required to ascertain this conjecture and to establish the influence of various cannabis extracts on host health in general and NAFLD in particular.

7.
J Cannabis Res ; 4(1): 27, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644678

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome, which often includes obesity, diabetes, and dyslipidemia. Several studies in mice and humans have implicated the involvement of the gut microbiome in NAFLD. While cannabis and its phytocannabinoids may potentially be beneficial for treating metabolic disorders such as NAFLD, their effects on liver diseases and gut microbiota profile have yet to be addressed. In this study, we evaluated the therapeutic effects of the two major cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on NAFLD progression. METHODS: NAFLD was induced by feeding mice a high fat-cholesterol diet (HFCD) for 6 weeks. During this period, the individual cannabinoids, THC or CBD, were added to the experimental diets at a concentration of 2.5 or 2.39 mg/kg. Profile of lipids, liver enzymes, glucose tolerance, and gene expression related to carbohydrate lipids metabolism and liver inflammation was analyzed. The effect of THC or CBD on microbiota composition in the gut was evaluated. RESULTS: While not alleviating hepatic steatosis, THC or CBD treatment influenced a number of parameters in the HFCD mouse model. CBD increased food intake, improved glucose tolerance, reduced some of the inflammatory response including TNFa and iNOS, and partially mitigated the microbiome dysbiosis observed in the HFCD fed mice. THC produced a much weaker response, only slightly reducing inflammatory-related gene expression and microbiome dysbiosis. CONCLUSIONS: The results of this study indicate the potential therapeutic effects of individual phytocannabinoids are different from the effects of the cannabis plant possessing a mixture of compounds. While CBD may help ameliorate symptoms of NAFLD, THC alone may not be as effective. This disparity can putatively be explained based on changes in the gut microbiota.

8.
Sci Rep ; 12(1): 3647, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256610

RESUMO

Dittrichia viscosa is a perennial Mediterranean plant used in traditional medicine for "calming purposes", pointing at a possible antidepressant activity of the plant. We conducted chromatographic and bioassay-guided fractionation of D. viscosa root extract to isolate a specific fraction (fraction "K") with antidepressant-like characteristics in vivo and strong antioxidant properties in vitro. A single dose of "K" reduced immobility time in the forced swim test with a mouse model possessing a depressive-like phenotype. Neurochemical profiling for 5-hydroxytryptamine (5-HT) and its primary metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in prefrontal cortex and hippocampus of "K"-treated mice showed reduction in 5-HIAA, indicative of either serotonin uptake transporter or monoamine oxidase-A inhibition, as well as slight increases in 5-HT content. These neurochemical alterations, as well as the behavioral changes observed, were comparable to the effects of paroxetine. "K" also protected PC12 cells in a H2O2 cytotoxicity assay, thus demonstrating antioxidant properties, yet paroxetine augmented oxidative damage and cell death. Identification of the main compounds in "K" by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) indicated that chlorogenic acid and cynarine comprised 87% of the total components. D. viscosa root extract appears to produce antidepressant and cytoprotective effects and may serve as an attractive alternative to standard therapies for depression.


Assuntos
Asteraceae , Ácido Clorogênico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antioxidantes/farmacologia , Asteraceae/química , Comportamento Animal , Ácido Clorogênico/farmacologia , Cinamatos , Peróxido de Hidrogênio/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Camundongos , Paroxetina , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Espectrometria de Massas em Tandem
9.
Cannabis Cannabinoid Res ; 5(3): 202-214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923658

RESUMO

Introduction: Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome, which often includes obesity, diabetes, and dyslipidemia. Several studies in mice and humans have implicated the involvement of the gut microbiome in NAFLD. While cannabis may potentially be beneficial for treating metabolic disorders such as NAFLD, the effects of cannabis on liver diseases and gut microbiota profile are yet to be addressed. In this study, we evaluated the therapeutic effects of cannabis strains with different cannabinoid profiles on NAFLD progression. Materials and Methods: NAFLD was induced by feeding mice a high-fat/cholesterol diet (HFCD) for 6 weeks. During this period, cannabis extracts were administrated orally at a concentration of 5 mg/kg every 3 days. Profile of lipids, liver enzymes, glucose tolerance, and gene expression related to carbohydrate lipid metabolism and liver inflammation were analyzed. The effect of cannabis strains on microbiota composition in the gut was evaluated. Results: A cannabidiol (CBD)-rich extract produced an increase in inflammatory related gene expression and a less diverse microbiota profile, associated with increased fasting glucose levels in HFCD-fed mice. In contrast, mice receiving a tetrahydrocannabinol (THC)-rich extract exhibited moderate weight gain, improved glucose response curves, and a decrease in liver enzymes. Conclusions: The results of this study indicate that the administration of cannabis containing elevated levels of THC may help ameliorate symptoms of NAFLD, whereas administration of CBD-rich cannabis extracts may cause a proinflammatory effect in the liver, linked with an unfavorable change in the microbiota profile. Our preliminary data suggest that these effects are mediated by mechanisms other than increased expression of the endocannabinoid receptors cannabinoid receptor 1 (CB1) and CB2.

10.
Plants (Basel) ; 9(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751398

RESUMO

Lilium candidum L., known as Madonna, meadow, or white lily, is a bulbous plant from the Liliaceae family, originating in the Middle East. L. candidum has been abundantly used in folk medicine since ancient times to relieve a variety of ailments, including age-related diseases, burns, ulcers, and coughs. The aim of this article is to investigate the anti-inflammatory and anti-diabetic activities of L. candidum extracts and its active phytochemicals. Some active volatile phytochemicals were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Significant (p < 0.001) anti-diabetic properties of the extracts kaempferol, linalool, citronellal, and humulene were demonstrated by an elevation in glucose uptake by adipocytes. The significant (p < 0.01) effect of the plant extracts kaempferol, citronellal, and humulene on the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8) was demonstrated using enzyme-linked immunosorbent assay. Altogether, L. candidum and its rich collection of phytochemicals hold promising medicinal potential, and further investigations of its therapeutic prospects are encouraged.

11.
Plants (Basel) ; 9(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526841

RESUMO

While spinach is an established nutritionally important crop, its medicinal value is not as well known. Spinach is rich in ecdysteroids, insect hormone analogs with a number of medicinal properties including anti-oxidative, anti-inflammatory and even anabolic activity. However, the potential of spinach as a medicinal plant has not yet been developed. In this study, the ecdysteroid content of spinach was optimized to increase its therapeutic value. Spinach seeds from various sources were grown under controlled hydroponic conditions and analyzed for ecdysteroid content and related anabolic activity. Variations in ecdysteroid content and the related anabolic activity were observed among spinach accessions. A selected variety, Spinacia oleracea cv. Turkey, was exposed to various physical and chemical elicitors to increase and stabilize ecdysteroid content. A number of elicitors, including methyl salicylate and mechanical damage, significantly increased ecdysteroid content and anabolic activity 24 h after exposure. The effect was transient and disappeared 48 h thereafter. Further work is needed to identify the most suitable germplasm and elicitation conditions for optimal ecdysteroid content.

12.
Behav Brain Res ; 379: 112361, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734264

RESUMO

The effects of cannabis reported by users range from experiences of euphoria and anxiolytic effects to paranoia, anxiety, and increased risk of depression. Attempts to reconcile the apparent contradictions in user response have not been conclusive. Here, we utilized selectively-bred stress-resilient socially dominant (Dom) and stress-sensitive socially submissive (Sub) mice to elucidate this contradiction. Following short-term, repeated treatment with delta-9-tetrahydrocannabinol (THC) at two different doses (1.5 mg/kg and 15 mg/kg), Sub mice presented significant place-aversion in a Conditioned Place Preference paradigm at a high dose, whereas Dom mice displayed no place preference or aversion. Forced Swim test conducted after 6-week of washout period, revealed differential impact of the two THC doses depending upon behavioral pattern. Specifically, the low dose alleviated depressive-like behavior in Sub mice, while the high dose produced the opposite effect in Dom mice. Interestingly, corticosterone concentration in serum was elevated at the high dose regardless of the mice-population tested. We conclude here that differences in dominance behavior and stress vulnerability are involved in the regulation of cannabis response among users and should be considered when prescribing THC-containing medications to patients.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/sangue , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Dominação-Subordinação , Dronabinol/farmacologia , Personalidade , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Masculino , Camundongos , Personalidade/fisiologia
13.
Front Plant Sci ; 10: 736, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263470

RESUMO

Mineral nutrition is a major factor affecting plant growth and function. Increasing evidence supports the involvement of macro and micronutrients in secondary metabolism. The use of the appropriate nutritional measures including organic fertilizers, supplements, and biostimulants is therefore a vital aspect of medicinal plant production including medical cannabis. Due to legal restriction on cannabis research, very little information is available concerning the effects of nutritional supplements on physiological and chemical properties of medical cannabis, and their potential role in standardization of the active compounds in the plant material supplied to patients. This study therefore evaluated the potential of nutritional supplementations, including humic acids (HAs) and inorganic N, P, and K to affect the cannabinoid profile throughout the plant. The plants were exposed to three enhanced nutrition treatments, compared to a commercial control treatment. The nutrition treatments were supplemented with HA, enhanced P fertilization, or enhanced NPK. The results demonstrate sensitivity of cannabinoids metabolism to mineral nutrition. The nutritional supplements affected cannabinoid content in the plants differently. These effects were location and organ specific, and varied between cannabinoids. While the P enhancement treatment did not affect THC, CBD, CBN, and CBG concentrations in the flowers from the top of the plants, a 16% reduction of THC concentration was observed in the inflorescence leaves. Enhanced NPK and HA treatments also produced organ-specific and spatially specific responses in the plant. NPK supplementation increased CBG levels in flowers by 71%, and lowered CBN levels in both flowers and inflorescence leaves by 38 and 36%, respectively. HA was found to reduce the natural spatial variability of all of the cannabinoids studied. However, the increased uniformity came at the expense of the higher levels of cannabinoids at the top of the plants, THC and CBD were reduced by 37 and 39%, respectively. Changes in mineral composition were observed in specific areas of the plants. The results demonstrate that nutritional supplements influence cannabinoid content in cannabis in an organ- and spatial-dependent manner. Most importantly, the results confirm the potential of environmental factors to regulate concentrations of individual cannabinoids in medical cannabis. The identified effects of nutrient supplementation can be further developed for chemical control and standardization in cannabis.

14.
Rejuvenation Res ; 22(4): 282-288, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30353767

RESUMO

Crude ethanolic extracts from Phlomis viscosa Poiret leaves from the Judea region (Israel) are renowned for their remarkable geroprotective properties: anti-inflammatory, anti-diabetic, and anti-cancer. A phytochemical investigation carried out in this study revealed that the tested plant might belong to a particular distinct chemotype because its phytochemicals are different from compounds that were mentioned in the literature. Among the compounds identified by us was diosmin, the synthetic derivatives of which were further obtained and investigated. In particular, activities of the isolated compounds and synthesized diosmin derivatives were assessed. Our results revealed that the following compounds significantly lessened secretion of some pro-inflammatory cytokines: diosmin, himachala-2-diene, and 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl) chromen-4-one. In addition, diosmin, synthesized diosmin derivatives, and some identified terpenes were found to have anti-diabetic activities. A significant anti-cancer effect of the whole extract on U-87 (human glioblastoma carcinoma cells line) and MCF7 (human breast carcinoma cell line) was also demonstrated, and it was better than that of DOX (doxorubicin). Collectively, the results obtained in the in vitro models suggest a wide spectrum of beneficial bioactivities of the extract and its active compounds.


Assuntos
Phlomis/química , Compostos Fitoquímicos/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus/tratamento farmacológico , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
15.
Nutrients ; 9(9)2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832516

RESUMO

Our "diabetogenic diet" composition [1] was indeed based on the one described by Funda et al. [2] with regards to dietary requirements.[...].


Assuntos
Nutrientes , Triticum
16.
Nutrients ; 9(5)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489059

RESUMO

Nutrition, especially wheat consumption, is a major factor involved in the onset of type 1 diabetes (T1D) and other autoimmune diseases such as celiac. While modern wheat cultivars possess similar gliadin proteins associated with the onset of celiac disease and T1D, alternative dietary wheat sources from Israeli landraces and native ancestral species may be lacking the epitopes linked with T1D, potentially reducing the incidence of T1D. The Non-Obese Diabetic (NOD) mouse model was used to monitor the effects of dietary wheat sources on the onset and development of T1D. The effects of modern wheat flour were compared with those from either T. aestivum, T. turgidum spp. dicoccoides, or T. turgidum spp. dicoccum landraces or a non-wheat diet. Animals which received wheat from local landraces or ancestral species such as emmer displayed a lower incidence of T1D and related complications compared to animals fed a modern wheat variety. This study is the first report of the diabetogenic properties of various dietary wheat sources and suggests that alternative dietary wheat sources may lack T1D linked epitopes, thus reducing the incidence of T1D.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Dieta , Triticum , Ração Animal/análise , Animais , Glicemia , Feminino , Insulina/sangue , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Distribuição Aleatória , Triticum/classificação
17.
Phytochemistry ; 116: 283-289, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25796090

RESUMO

Withania somnifera, known in India as Asghawhanda, is used traditionally to treat many medical problems including diabetes and has demonstrated therapeutic activity in various animal models as well as in diabetic patients. While much of W. somnifera's therapeutic activity is attributed to withanolides, their role in the anti-diabetic activity of W. somnifera has not been adequately studied. In the present study, we evaluated the anti-diabetic activity of W. somnifera extract and purified withanolides, as well as the effect of various elicitors on this activity. W. somnifera leaf and root extracts increased glucose uptake in myotubes and adipocytes in a dose dependent manner, with the leaf extract more active than the root extract. Leaf but not root extract increased insulin secretion in basal pancreatic beta cells but not in stimulated cells. Six withanolides isolated from W. somnifera were tested for anti-diabetic activity based on glucose uptake in skeletal myotubes. Withaferin A was found to increase glucose uptake, with 10µM producing a 54% increase compared with control, suggesting that withaferin A is at least partially responsible for W. somnifera's anti-diabetic activity. Elicitors applied to the root growing solutions affected the physiological state of the plants, altering membrane leakage or osmotic potential. Methyl salicylate and chitosan increased withaferin A content by 75% and 69% respectively, and extracts from elicited plants increased glucose uptake to a higher extent than non-elicited plants, demonstrating a correlation between increased content of withaferin A and anti-diabetic activity.


Assuntos
Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Withania/química , Vitanolídeos/farmacologia , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Quitosana/farmacologia , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/química , Índia , Israel , Estrutura Molecular , Salicilatos/farmacologia
18.
J Ethnopharmacol ; 137(3): 1245-9, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21821109

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chiliadenus iphionoides (Boiss. & Blanche) Brullo (Asteraceae), a small aromatic shrub found throughout Israel, is used traditionally in the treatment of diabetes mellitus. In this study, Chiliadenus iphionoides anti-diabetic activity was characterized using cellular and animal models. MATERIALS AND METHODS: Pancreatic ß cells, adipocytes, and skeletal myotubes were treated with an ethanolic extract of Chiliadenus iphionoides to study the extract's effects on insulin secretion and glucose uptake. The sand rat (Psammomys obesus) was used to study Chiliadenus iphionoides acute and long term effects in vivo. An oral starch tolerance test was performed as well as a 30 day feeding study. RESULTS: Chiliadenus iphionoides extract increased insulin secretion in ß cells as well as glucose uptake in adipocytes and skeletal myotubes. The extract also displayed hypoglycemic activity in the diabetic sand rat. CONCLUSIONS: Chiliadenus iphionoides exhibits considerable anti-diabetic activity, although the mechanism of action remains to be determined.


Assuntos
Asteraceae , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Asteraceae/química , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Gerbillinae , Hipoglicemiantes/isolamento & purificação , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Fatores de Tempo
19.
Chem Biodivers ; 8(6): 1065-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674780

RESUMO

Chiliadenus iphionoides (Asteraceae), a shrub endemic to the Mediterranean region and widespread throughout Israel, is used in the traditional eastern Mediterranean medicine. Although recent research confirmed its pharmacological potential, C. iphionoides essential oil has not been adequately characterized chemically. Essential-oil samples were collected from representative wild populations throughout Israel and characterized by GC/MS analysis. Considerable interpopulation variation was found for the composition of the essential oils. Multivariate analysis showed a significant correlation between the chemical composition and the geographic location, with three main chemotypes identified.


Assuntos
Asteraceae/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Análise Discriminante , Israel , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...