Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 8(1): 40, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982944

RESUMO

BACKGROUND: Heterometallic gold metallacages are of great interest for the incorporation of several cations. Especially in nuclear medicine, those metallacages can serve as a platform for radionuclides relevant for imaging or therapy (e.g. 68Ga or 177Lu). Moreover, the radionuclide 198Au is an attractive beta emitter, for potential application in nuclear medicine. Here, we aim to synthesize a new set of gold metallacages and to study their ability to coordinate to 68Ga, 177Lu and 198Au. RESULTS: New heterometallic gold metallacages of composition [M{Au(Lmorph-κS)}3] (M = La3+, Tb3+, Lu3+ or Y3+) and [Ga{Au(Lmorph-κS)}2]NO3 have been synthesized from 2,6-dipicolinoylbis(N,N-morpholinylthiourea) (H2Lmorph) with [AuCl(THT)] and the target M3+ metal ions in yields ranging from 33 (Lu) to 62% (Tb). The characterization of the compounds bases on ESI-MS, 1H NMR, IR, EA and single-crystal X-ray diffraction techniques (all except the Ga derivative). Selected gold cages derived from H2Lmorph were compared to previously reported gold cages that were derived from 2,6-dipicolinoylbis(N,N-diethylthiourea) (H2Ldiethyl). The tested metallacages show similar IC50 values close to that of auranofin in four different cancer cell lines (MCF-7, PC-3, U383, U343), e.g. 4.5 ± 0.7 µM for [Ga{Au(Ldiethyl)}2]NO3 on PC-3. The radiolabeling experiments thereof show high radiochemical purities with 68Ga and 198Au and low radiochemical purity with 177Lu. CONCLUSIONS: The results indicate that these gold metallacages could serve as a novel platform for inclusion of different (radio)nuclides with potential theranostic applications in nuclear medicine.

2.
Nat Commun ; 8: 15484, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508892

RESUMO

Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...