Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(20): 205401, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29611814

RESUMO

In BaTiO3 the phase transition from tetragonal to cubic is connected with the disappearance of the ferroelectric polarization. In photoelectron spectroscopy huge transient shifts in the binding energies of all core-level photoemission lines have been observed while heating and cooling through the Curie temperature. Excitation energies from 2 keV to 6 keV have been used to show this to be a bulk effect and not a surface effect alone. These observations are discussed in terms of charging, which results from the disappearance of the ferroelectric polarization. This mechanism has previously been proposed as the origin of electron emission in ferroelectric materials. Besides the jump-like shifts, additional permanent shifts in binding energies have been observed for the tetragonal and the cubic phase. These experimental shifts have been related to theoretical ones from ab initio calculations. In addition to BaTiO3 single crystals, systems with CoFe2O4 and NiFe2O4 overlayers on BaTiO3 have been investigated. The low conductivity of these layers sets them apart from metallic overlayers like Fe or Co, where the shifts are suppressed. This difference adds further support for charging as the origin of the effect.

2.
Sci Rep ; 6: 22912, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975515

RESUMO

Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.

3.
Nat Commun ; 5: 4010, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24874099

RESUMO

Synchrotron radiation facilities routinely operate in a multi-bunch regime, but applications relying on time-of-flight schemes require single bunch operation. Here we show that pulse picking by resonant excitation in a storage ring creates in addition to the multi-bunch operation a distinct and separable single bunch soft X-ray source. It has variable polarization, a photon flux of up to 10(7)-10(9) ph s(-1)/0.1%BW at purity values of 10(4)-10(2) and a repetition rate of 1.25 MHz. The quasi-resonant excitation of incoherent betatron oscillations of electrons allows horizontal pulse separation at variable (also circular) polarization accessible for both, regular 30 ps pulses and ultrashort pulses of 2-3 ps duration. Combined with a new generation of angularly resolving electron spectrometers this creates unique opportunities for time-resolved photoemission studies as confirmed by time-of-flight spectra. Our pulse picking scheme is particularly suited for surface physics at diffraction-limited light sources promising ultimate spectral resolution.

4.
Phys Rev Lett ; 102(17): 176805, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518810

RESUMO

The conducting interface of LaAlO3/SrTiO3 heterostructures has been studied by hard x-ray photoelectron spectroscopy. From the Ti 2p signal and its angle dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3 overlayers. Our results point to an electronic reconstruction in the LaAlO3 overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.

5.
Rev Sci Instrum ; 78(12): 123102, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163715

RESUMO

The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3) by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry (theta(Bragg,max)=82 degrees) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10(11)-10(12) photons/s range and beamline resolving powers of more than E/DeltaE approximately 100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.

6.
Phys Rev Lett ; 97(26): 266106, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280435

RESUMO

We propose a nondestructive technique based on atomic core-level shifts to characterize the interface quality of thin film nanomaterials. Our method uses the inherent sensitivity of the atomic core-level binding energies to their local surroundings in order to probe the layer-resolved binary alloy composition profiles at deeply embedded interfaces. From an analysis based upon high energy x-ray photoemission spectroscopy and density functional theory of a Ni/Cu fcc (100) model system, we demonstrate that this technique is a sensitive tool to characterize the sharpness of a buried interface. We performed controlled interface tuning by gradually approaching the diffusion temperature of the multilayer, which lead to intermixing. We show that core-level spectroscopy directly reflects the changes in the electronic structure of the buried interfaces, which ultimately determines the functionality of the nanosized material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...