Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(6): C1776-C1788, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738304

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.


Assuntos
Antimicina A , DNA Mitocondrial , Espaço Extracelular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Espaço Extracelular/metabolismo , Antimicina A/farmacologia , Rotenona/farmacologia , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Necrose , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352590

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA differs in pregnancies with placental dysfunction from healthy pregnancies and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA from non-placental cells; yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane bound, non-membrane bound, and vesicular-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (p<0.0001), induced cell necrosis (p=0.0004) but not apoptosis (p=0.6471) and was positively associated with release of membrane-bound and non-membrane bound mtDNA (p<0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicular-bound form; p=0.0019) and reduced autophagy marker expression (LC3A/B, p=0.0002; p62, p<0.001). Rotenone treatment did not influence mtDNA release or cell death (p>0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes non-apoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress. NEW & NOTEWORTHY: This is the first study to test whether trophoblast cells release mitochondrial DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mitochondrial DNA in preclinical experimental models and humans.

3.
J Alzheimers Dis ; 97(3): 1407-1419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250773

RESUMO

BACKGROUND: Age is known to be the biggest risk factor for Alzheimer's disease (AD), and Mexican Americans (MAs), who are one of the fastest-aging populations in the United States, are at a uniquely elevated risk. Mitochondrial stress and dysfunction are key players in the progression of AD and are also known to be impacted by lifestyle and environmental exposures/stressors. OBJECTIVE: This study aimed to identify population-specific differences in indicators of mitochondrial stress and dysfunction associated with AD risk that are detectable in the blood. METHODS: Examining blood from both non-Hispanic white (NHW) and MA participants (N = 527, MA n = 284, NHW n = 243), mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) copy numbers were assessed through quantitative PCR. Data was stratified by population and sample type, and multiple linear regression analyses were performed to identify factors that may influence this phenotype of mitochondrial dysfunction. RESULTS: In the MA cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and body mass index, CDR sum of boxes score, the APOEɛ2/ɛ3 genotype, and education. Further, there was a significant relationship between cell-free mtDNA copy number and both education and CDR sum score. In the NHW cohort, there was a significant relationship between cellular mtDNA:nDNA ratio and both age and CDR sum score. Age was associated with cell-free mtDNA in the NHW cohort. CONCLUSIONS: This evidence supports the existence of population-based differences in the factors that are predictive of this blood-based phenotype of mitochondrial dysfunction, which may be indicative of cognitive decline and AD risk.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doença de Alzheimer/genética , Mitocôndrias/genética , Envelhecimento
4.
Alzheimers Res Ther ; 15(1): 171, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821944

RESUMO

BACKGROUND: Alterations in mitochondrial DNA (mtDNA) levels have been observed in Alzheimer's disease and are an area of research that shows promise as a useful biomarker. It is well known that not only are the mitochondria a key player in producing energy for the cell, but they also are known to interact in other important intracellular processes as well as extracellular signaling and communication. BODY: This mini review explores how cells use mtDNA as a stress signal, particularly in Alzheimer's disease. We investigate the measurement of these mtDNA alterations, the mechanisms of mtDNA release, and the immunological effects from the release of these stress signals. CONCLUSION: Literature indicates a correlation between the release of mtDNA in Alzheimer's disease and increased immune responses, showing promise as a potential biomarker. However, several questions remain unanswered and there is great potential for future studies in this area.


Assuntos
Doença de Alzheimer , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Biomarcadores/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...