Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21780, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027788

RESUMO

This study investigates a fractional-order time derivative model of non-Newtonian magnetic blood flow in the presence of thermal radiation and body acceleration through an inclined artery. The blood flow is formulated using the Casson fluid model under the control of a uniformly distributed magnetic field and an oscillating pressure gradient. Caputo-Fabrizio's fractional derivative mathematical model was used, along with Laplace transform and the finite Hankel transform technique. Analytical expressions were obtained for the velocity of blood flow, magnetic particle distribution, and temperature profile. These distributions are presented graphically using Mathcad software. The results show that the velocity increases with the time, Reynolds number and Casson fluid parameters, and diminishes when Hartmann number increases. Moreover, fractional parameters, radiation values, and metabolic heat source play an essential role in controlling the blood temperature. More precisely, these results are beneficial for the diagnosis and treatment of certain medical issues.

2.
Bioengineering (Basel) ; 10(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106603

RESUMO

In this paper, we designed and demonstrated a stimuli-responsive hydrogel that mimics the mass diffusion function of the liver. We have controlled the release mechanism using temperature and pH variations. Additive manufacturing technology was used to fabricate the device with nylon (PA-12), using selective laser sintering (SLS). The device has two compartment sections: the lower section handles the thermal management, and feeds temperature-regulated water into the mass transfer section of the upper compartment. The upper chamber has a two-layered serpentine concentric tube; the inner tube carries the temperature-regulated water to the hydrogel using the given pores. Here, the hydrogel is present in order to facilitate the release of the loaded methylene blue (MB) into the fluid. By adjusting the fluid's pH, flow rate, and temperature, the deswelling properties of the hydrogel were examined. The weight of the hydrogel was maximum at 10 mL/min and decreased by 25.29% to 10.12 g for the flow rate of 50 mL/min. The cumulative MB release at 30 °C increased to 47% for the lower flow rate of 10 mL/min, and the cumulative release at 40 °C climbed to 55%, which is 44.7% more than at 30 °C. The MB release rates considerably increased when the pH dropped from 12 to 8, showing that the lower pH had a major impact on the release of MB from the hydrogel. Only 19% of the MB was released at pH 12 after 50 min, and after that, the release rate remained nearly constant. At higher fluid temperatures, the hydrogels lost approximately 80% of their water in just 20 min, compared to a loss of 50% of their water at room temperature. The outcomes of this study may contribute to further developments in artificial organ design.

3.
Med Biol Eng Comput ; 60(11): 3169-3185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107356

RESUMO

This manuscript is devoted to investigate the mathematical model of fractional-order dynamical system of the recent disease caused by Corona virus. The said disease is known as Corona virus infectious disease (COVID-19). Here we analyze the modified SEIR pandemic fractional order model under nonsingular kernel type derivative introduced by Atangana, Baleanu and Caputo ([Formula: see text]) to investigate the transmission dynamics. For the validity of the proposed model, we establish some qualitative results about existence and uniqueness of solution by using fixed point approach. Further for numerical interpretation and simulations, we utilize Adams-Bashforth method. For numerical investigations, we use some available clinical data of the Wuhan city of China, where the infection initially had been identified. The disease free and pandemic equilibrium points are computed to verify the stability analysis. Also we testify the proposed model through the available data of Pakistan. We also compare the simulated data with the reported real data to demonstrate validity of the numerical scheme and our analysis.


Assuntos
COVID-19 , Dinâmica não Linear , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...