Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136653

RESUMO

The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1ß, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.


Assuntos
Transtorno Depressivo Maior , Resiliência Psicológica , Camundongos , Animais , Depressão/genética , Depressão/psicologia , Anedonia/fisiologia , Transtorno Depressivo Maior/metabolismo , Dinâmica Mitocondrial , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos , Sacarose/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão Gênica
2.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37767237

RESUMO

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

3.
J Neural Transm (Vienna) ; 130(9): 1113-1132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542675

RESUMO

Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.


Assuntos
Serotonina , Triptofano Hidroxilase , Camundongos , Ratos , Feminino , Animais , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Agressão/fisiologia , Encéfalo/metabolismo , Comportamento Social
4.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511470

RESUMO

Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3ß, IL-1ß, and IL-6 and increased serum concentrations of IL-1ß, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.


Assuntos
Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Gravidez , Animais , Humanos , Feminino , Comportamento Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Lipopolissacarídeos/toxicidade , Glicogênio Sintase Quinase 3 beta , Interleucina-6/efeitos adversos , Citocinas , Modelos Animais de Doenças
5.
Nutrients ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447374

RESUMO

Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.


Assuntos
Microbioma Gastrointestinal , Proteínas da Membrana Plasmática de Transporte de Serotonina , Camundongos , Feminino , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Dieta Ocidental/efeitos adversos , RNA Ribossômico 16S/genética , Encéfalo/metabolismo , Firmicutes/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674429

RESUMO

Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.


Assuntos
Transtorno Depressivo Maior , Humanos , Depressão , Doenças Neuroinflamatórias , Agressão/psicologia , Estresse Oxidativo
7.
Biomed Pharmacother ; 156: 113986, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411653

RESUMO

Mutations in the gene encoding the RNA/DNA-binding protein Fused in Sarcoma (FUS) have been detected in familial amyotrophic lateral sclerosis (ALS) patients. FUS has been found to be a critical component of the oxidative damage repair complex that might explain its role in neurodegeneration. Here, we examined what impact antioxidant treatment with thiamine (vitamine B1), or its more bioavailable derivative O,S-dibenzoylthiamine (DBT), would have on the hallmarks of pathology in the FUS[1-359]-transgenic mouse model of ALS. From 8-weeks old, in the pre-symptomatic phase of disease, animals received either thiamine, DBT (200 mg/kg/day), or vehicle for 6 weeks. We examined physiological, behavioral, molecular and histological outcomes, as well as the serum metabolome using nuclear magnetic resonance (NMR). The DBT-treated mice displayed improvements in physiological outcomes, motor function and muscle atrophy compared to vehicle, and the treatment normalized levels of brain glycogen synthase kinase-3ß (GSK-3ß), GSK-3ß mRNA and IL-1ß mRNA in the spinal cord. Analysis of the metabolome revealed an increase in the levels of choline and lactate in the vehicle-treated FUS mutants alone, which is also elevated in the cerebrospinal fluid of ALS patients, and reduced glucose and lipoprotein concentrations in the FUS[1-359]-tg mice, which were not the case in the DBT-treated mutants. The administration of thiamine had little impact on the outcome measures, but it did normalize circulating HDL levels. Thus, our study shows that DBT therapy in FUS mutants is more effective than thiamine and highlights how metabolomics may be used to evaluate therapy in this model.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína FUS de Ligação a RNA/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Atrofia Muscular , Camundongos Transgênicos , Tiamina/farmacologia , Tiamina/uso terapêutico , Metaboloma , RNA Mensageiro/metabolismo
8.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144993

RESUMO

Ce1-xZrxO2 oxides (x = 0.1, 0.25, 0.5) prepared via the Pechini route were investigated using XRD analysis, N2 physisorption, TEM, and TPR in combination with density functional theory calculations. The Ni/Ce1-xZrxO2 catalysts were characterized via XRD analysis, SEM-EDX, TEM-EDX, and CO chemisorption and tested in carbon dioxide methanation. The obtained Ce1-xZrxO2 materials were single-phase solid solutions. The increase in Zr content intensified crystal structure strains and favored the reducibility of the Ce1-xZrxO2 oxides but strongly affected their microstructure. The catalytic activity of the Ni/Ce1-xZrxO2 catalysts was found to depend on the composition of the Ce1-xZrxO2 supports. The detected negative effect of Zr content on the catalytic activity was attributed to the decrease in the dispersion of the Ni0 nanoparticles and the length of metal-support contacts due to the worsening microstructure of Ce1-xZrxO2 oxides. The improvement of the redox properties of the Ce1-xZrxO2 oxide supports through cation modification can be negated by changes in their microstructure and textural characteristics.

9.
Front Med (Lausanne) ; 9: 952977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091684

RESUMO

Background: While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods: The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1ß) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results: LPS-induced in vitro release of TNF and IL-1ß was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions: Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.

10.
Cells ; 11(6)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326487

RESUMO

The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 ß (GSK-3ß), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.


Assuntos
Serotonina , Triptofano Hidroxilase/metabolismo , Agressão/fisiologia , Animais , Feminino , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Comportamento Predatório , Ratos , Serotonina/metabolismo , Triptofano Hidroxilase/genética
11.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576646

RESUMO

The paper presents a comparative study of the activity of magnetite (Fe3O4) and copper and cobalt ferrites with the structure of a cubic spinel synthesized by combustion of glycine-nitrate precursors in the reactions of ammonia borane (NH3BH3) hydrolysis and hydrothermolysis. It was shown that the use of copper ferrite in the studied reactions of NH3BH3 dehydrogenation has the advantages of a high catalytic activity and the absence of an induction period in the H2 generation curve due to the activating action of copper on the reduction of iron. Two methods have been proposed to improve catalytic activity of Fe3O4-based systems: (1) replacement of a portion of Fe2+ cations in the spinel by active cations including Cu2+ and (2) preparation of highly dispersed multiphase oxide systems, involving oxide of copper.

12.
Front Nutr ; 8: 661455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937310

RESUMO

Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of "emotional" ultrasound stress (US), mice were subjected to ultrasound frequencies of 16-20 kHz, mimicking rodent sounds of anxiety/despair and "neutral" frequencies of 25-45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33127424

RESUMO

Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Dopamina/genética , Masculino , Camundongos , Camundongos Transgênicos , Norepinefrina/genética , Ratos , Ratos Wistar , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Triptofano Hidroxilase/genética
14.
Biomedicines ; 8(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962139

RESUMO

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.

15.
J Cell Mol Med ; 24(17): 10251-10257, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32667139

RESUMO

Genetic mutations in FUS, a DNA/RNA-binding protein, are associated with inherited forms of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A novel transgenic FUS[1-359]-tg mouse line recapitulates core hallmarks of human ALS in the spinal cord, including neuroinflammation and neurodegeneration, ensuing muscle atrophy and paralysis, as well as brain pathomorphological signs of FTLD. However, a question whether FUS[1-359]-tg mouse displays behavioural and brain pro-inflammatory changes characteristic for the FTLD syndrome was not addressed. Here, we studied emotional, social and cognitive behaviours, brain markers of inflammation and plasticity of pre-symptomatic FUS[1-359]-tg male mice, a potential FTLD model. These animals displayed aberrant behaviours and altered brain expression of inflammatory markers and related pathways that are reminiscent to the FTLD-like syndrome. FTLD-related behavioural and molecular Journal of Cellular and Molecular Medicine features were studied in the pre-symptomatic FUS[1-359]-tg mice that received standard or new ALS treatments, which have been reported to counteract the ALS-like syndrome in the mutants. We used anti-ALS drug riluzole (8 mg/kg/d), or anti-inflammatory drug, a selective blocker of cyclooxygenase-2 (celecoxib, 30 mg/kg/d) for 3 weeks, or a single intracerebroventricular (i.c.v.) infusion of human stem cells (Neuro-Cells, 500 000-CD34+ ), which showed anti-inflammatory properties. Signs of elevated anxiety, depressive-like behaviour, cognitive deficits and abnormal social behaviour were less marked in FUS-tg-treated animals. Applied treatments have normalized protein expression of interleukin-1ß (IL-1ß) in the prefrontal cortex and the hippocampus, and of Iba-1 and GSK-3ß in the hippocampus. Thus, the pre-symptomatic FUS[1-359]-tg mice demonstrate FTLD-like abnormalities that are attenuated by standard and new ALS treatments, including Neuro-Cell preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Degeneração Lobar Frontotemporal/tratamento farmacológico , Degeneração Lobar Frontotemporal/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Mutação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Comportamento Social , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
16.
J Affect Disord ; 272: 440-451, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553388

RESUMO

BACKGROUND: The contribution of gene-environment interactions that lead to excessive aggression is poorly understood. Environmental stressors and mutations of the gene encoding tryptophan hydroxylase-2 (TPH2) are known to influence aggression. For example, TPH2 null mutant mice (Tph2-/-) are naturally highly aggressive, while heterozygous mice (Tph2+/-) lack a behavioral phenotype and are considered endophenotypically normal. Here we sought to discover whether an environmental stressor would affect the phenotype of the genetically 'susceptible' heterozygous mice (Tph2+/-). METHODS: Tph2+/- male mice or Tph2+/+ controls were subjected to a five-day long rat exposure stress paradigm. Brain serotonin metabolism and the expression of selected genes encoding serotonin receptors, AMPA receptors, and stress markers were studied. RESULTS: Stressed Tph2+/- mice displayed increased levels of aggression and social dominance, whereas Tph2+/+ animals became less aggressive and less dominant. Brain tissue concentrations of serotonin, its precursor hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid were significantly altered in all groups in the prefrontal cortex, striatum, amygdala, hippocampus and dorsal raphe after stress. Compared to non-stressed animals, the concentration of 5-hydroxytryptophan was elevated in the amygdala though decreased in the other brain structures. The overexpression of the AMPA receptor subunit, GluA2, and downregulation of 5-HT6 receptor, as well as overexpression of c-fos and glycogen-synthase-kinase-3ß (GSK3-ß), were found in most structures of the stressed Tph2+/- mice. LIMITATIONS: Rescue experiments would help to verify causal relationships of reported changes. CONCLUSIONS: The interaction of a partial TPH2 gene deficit with stress results in pathological aggression and molecular changes, and suggests that the presence of genetic susceptibility can augment aggression in seemingly resistant phenotypes.


Assuntos
Receptores de AMPA , Serotonina , Agressão , Animais , Quinase 3 da Glicogênio Sintase , Masculino , Camundongos , Ratos , Receptores de AMPA/genética , Triptofano Hidroxilase/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
17.
Neurobiol Learn Mem ; 172: 107227, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325189

RESUMO

Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3α, GSK-3ß, c-Fos, cyclooxygenase-1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1ß), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3ß gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200 mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories.


Assuntos
Antidepressivos Tricíclicos/administração & dosagem , Encéfalo/metabolismo , Depressão/metabolismo , Encefalite/metabolismo , Imipramina/administração & dosagem , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Depressão/complicações , Depressão/prevenção & controle , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/prevenção & controle , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL
18.
Stress ; 23(4): 481-495, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31900023

RESUMO

The modern lifestyle is associated with exposure to "psychological" or "emotional" stress. A growing portion of the population is exposed to emotional stress that results in a high incidence of anxiety disorders, a serious social problem. With this rise, there is a need for understanding the neurobiological causes of stress-induced anxiety and to offer safe remedies for this condition. Side effects of existing pharmaceuticals necessitate the search for alternatives. Having fewer adverse effects than classic remedies, natural extract-based therapies can be a promising solution. Here, we applied a model of emotional stress in BALB/c mice using ultrasound exposure to evoke the signs of anxiety-like behavior. We examined the behavioral and molecular impact of ultrasound and administration of herbal antioxidant/anti-inflammatory treatment (HAT) on AMPA receptor expression, markers of plasticity, inflammation and oxidative stress. A 3-week ultrasound exposure increased scores of anxiety-like behaviors in the standard tests and altered hippocampal expression as well as internalization of AMPA receptor subunits GluA1-A3. Concomitant treatment with HAT has prevented increases of anxiety-like behaviors and other behavioral changes, normalized hippocampal malondialdehyde content, GSK3ß and pro-inflammatory cytokines Il-1ß and Il-6, and the number of Ki67-positive cells. Levels of malondialdehyde, a common measure of oxidative stress, significantly correlated with the investigated end-points in stressed, but not in non-stressed animals. Our results emphasize the role of oxidative stress in neurobiological abnormalities associated with experimentally induced condition mimicking emotional stress in rodents and highlight the potential therapeutic use of anti-oxidants like herbal compositions for management of stress-related emotional disturbances within the community.


Assuntos
Antioxidantes , Estresse Psicológico , Animais , Anti-Inflamatórios , Antioxidantes/farmacologia , Ansiedade , Comportamento Animal , Encéfalo/diagnóstico por imagem , Hipocampo , Camundongos , Camundongos Endogâmicos BALB C
19.
CNS Neurosci Ther ; 26(5): 504-517, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867846

RESUMO

AIMS: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. METHODS: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. RESULTS: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. CONCLUSION: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Anti-Inflamatórios/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/métodos , Mediadores da Inflamação/antagonistas & inibidores , Transtornos das Habilidades Motoras/terapia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Mediadores da Inflamação/metabolismo , Injeções Intraventriculares/métodos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Resultado do Tratamento
20.
Acta Neurobiol Exp (Wars) ; 79(3): 232-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31587015

RESUMO

Emotional stress is considered a serious pathogenetic factor of depression. In this study an ultrasound model of emotional stress developed in our laboratory was applied. It is characterized by the use of ultrasound as the stressor agent. Animals are triggered not by any organic or physical disturbances but by the perception of adverse information. This type of stress can induce depressive-like behavioral changes in rodents, manifested by decreased sucrose preference and increased time of immobility in a forced swim test. Ultrasound stress also increased the levels of oxidative stress markers. This is important, as stress has an established association with increased oxidative processes in the central nervous system. Total glutathione and carbonyl protein content were selected as relevant brain markers, as glutathione plays a critical role in cellular defensive mechanisms during oxidative stress and the level of protein carbonyls can be a measure of global protein oxidation. We demonstrated that two weeks of chronic exposure to ultrasound was enough to cause depressive-like behavioral changes in rats. Increased levels of oxidative stress markers in the hippocampus and prefrontal cortex were also observed after two weeks of such stress. The current study has two goals: the first is to study the relationship of depression and oxidative stress; the second is an additional validation of our approach to modeling stress­induced depressive-like states in rats. The present data further support the validity of the ultrasound model by expanding information related to the influence of ultrasound stress on behavioral and physiological parameters, which are of great importance in the development of stress-induced depression. A time correlation between the onset of symptoms and a change in the level of oxidative stress markers in the brain is also demonstrated.


Assuntos
Comportamento Animal/fisiologia , Depressão/fisiopatologia , Estresse Oxidativo/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Córtex Pré-Frontal/fisiopatologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...