Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Data Brief ; 53: 110164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375140

RESUMO

Photometric stereo uses images of objects illuminated from various directions to calculate surface normals which can be used to generate 3D meshes of the object. Such meshes can be used by engineers to estimate damage of a concrete surface, or track damage progression over time to inform maintenance decisions. This dataset [1] was collected to quantify the uncertainty in a photometric stereo test rig through both the comparison with a well characterised method (coordinate measurement machine) and experiment virtualisation. Data was collected for 9 real objects using both the test rig and the coordinate measurement machine. These objects range from clay statues to damaged concrete slabs. Furthermore, synthetic data for 12 objects was created via virtual renders generated using Blender (3D software) [2]. The two methods of data generation allowed the decoupling of the physical rig (used to light and photograph objects) and the photometric stereo algorithm (used to convert images and lighting information into 3D meshes). This data can allow users to: test their own photometric stereo algorithms, with specialised data created for structural health monitoring applications; provide an industrially relevant case study to develop and test uncertainty quantification methods on test rigs for structural health monitoring of concrete; or develop data processing methodologies for the alignment of scaled, translated, and rotated data.

2.
Ocul Immunol Inflamm ; 31(1): 65-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34648419

RESUMO

PURPOSE: Inflammation is associated with, and may be causal of, a variety of ophthalmic pathologies. These pathologies are currently difficult to model in vitro because they involve complex interactions between the innate immune system, stromal cells, and other cells that normally maintain ocular tissue homeostasis. Using transscleral drainage channel fibrosis after glaucoma surgery as an example of inflammation-associated ocular fibrosis, we have assessed a simple but novel 3D cell culture system designed to reveal the immunomodulatory impacts of ocular connective tissue cells on monocytes, a major cellular component of the circulating immune system. METHODS: Primary human Tenon's capsule fibroblasts derived from five unrelated patients were activated into myofibroblasts in 3D collagen matrices under isometric tension, with and without exposure to an inflammatory cytokine-enhanced milieu, and co-cultured with an immortalized human monocyte cell line (THP-1 cells). Quantitative PCR analyses were performed on 8 candidate genes to assess the impacts of inflammatory cytokines on the myofibroblasts and the monocytes in mono-cultures and compared to cells in co-culture to clearly distinguish any co-culture-induced impacts on gene expression. RESULTS: Our data indicate that both Tenon's capsule myofibroblasts in 3D mono-culture and THP-1 monocytes in suspension mono-culture were responsive to inflammatory cytokine stimuli. Co-culture with Tenon's capsule myofibroblasts significantly modulated the gene expression responses of THP-1 monocytes to inflammatory cytokine stimulation, indicative of an immunomodulatory "feedback" system between these cell types. CONCLUSION: Our findings provide proof of principle for the use of simple 3D co-culture systems as a means to enhance our understanding of ocular stromal cell interactions with cells of the innate immune system and to provide more informative in vitro models of inflammation-associated ophthalmic pathologies.


Assuntos
Glaucoma , Miofibroblastos , Humanos , Técnicas de Cocultura , Monócitos/metabolismo , Glaucoma/cirurgia , Fibrose , Citocinas/metabolismo , Inflamação/metabolismo , Células Cultivadas
3.
J Cell Commun Signal ; 16(4): 677-690, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35414143

RESUMO

Palmar fibromatosis, also known as Dupuytren's disease (DD), is a common and heritable fibrosis of the hand. It is characterized by the formation of myofibroblastic nodules that can progress to palmar-digital contractures and permanent loss of dexterity. The presence of inflammatory cell infiltrate within these nodules has been interpreted to suggest a pathogenesis mediated by a proinflammatory microenvironment. However, the molecular mechanisms driving the formation of pro-fibrotic microenvironments in this and other fibroses remain unclear. To gain insights into this process, we have assessed the contributions of an alternatively spliced, multi-functional transcription factor, Wilms Tumor 1 (WT1), previously shown to be upregulated in primary myofibroblasts derived from DD tissues. Proinflammatory cytokine stimuli of DD myofibroblasts enhanced the expression of several distinct WT1 variants, the most sustained being a 5' truncated version of WT1, alternative WT1 (AWT1). Constitutive adenoviral expression of AWT1 in myofibroblasts derived from phenotypically non-fibrotic palmar fascia significantly induced the expression and secretion of proinflammatory cytokines, including some with potential as novel therapeutic targets. In summary, these data implicate roles for sustained AWT1 expression in DD as a transcriptional driver of a proinflammatory fascial milieu.

4.
Tissue Eng Part A ; 28(3-4): 175-183, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34309434

RESUMO

Postsurgical infections of the shoulder joint involving Cutibacterium acnes are difficult to diagnose and manage. Despite the devastating clinical complications and costly health care burden of joint infections, the scarcity of joint infection models was identified as an unmet need by the 2019 International Consensus on Orthopedic Infections. In this study, we have developed a novel 3D shoulder joint implant mimetic (S-JIM) that includes a surgical metal surface and supports a co-culture of C. acnes and patient-derived shoulder capsule fibroblasts. Our findings indicate the S-JIM can generate a near anaerobic interior environment that allows for C. acnes proliferation and elicits fibroblast cell lysis responses that are consistent with clinical reports of tissue necrosis. Using the S-JIM, we have provided proof-of-concept for the use of mass spectrometry in real-time detection of C. acnes joint infections during surgery. The S-JIM is the first in vitro cell culture-based biomimetic of periprosthetic joint infection (PJI) that provides a preclinical method for the rapid and reliable testing of novel anti-PJI interventions. Impact statement We have developed the first 3D laboratory biomimetic of the postsurgical human shoulder joint to study periprosthetic joint infections.


Assuntos
Artroplastia do Ombro , Infecções Relacionadas à Prótese , Articulação do Ombro , Biomimética , Humanos , Propionibacterium acnes , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/cirurgia , Articulação do Ombro/cirurgia
5.
J Shoulder Elbow Surg ; 31(1): 159-164, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352403

RESUMO

BACKGROUND: Intra-incisional deposition of vancomycin powder is a strategy to limit Cutibacterium acnes infection after shoulder surgery. Unfortunately, limited research exists examining the effectiveness of vancomycin in a clinically relevant joint infection model. This basic science study investigated the efficacy of vancomycin administration as prophylaxis for C acnes growth in vitro using a mimetic shoulder arthroplasty. METHODS: A new bioartificial shoulder joint mimetic implant (S-JIM) was used to investigate the effect of vancomycin powder on C acnes growth within the first 48 hours after surgery. The impact of vancomycin was assessed on a skin-derived (ATCC 11827) C acnes strain and a periprosthetic joint infection-derived strain. C acnes strains were applied to titanium alloy foil and embedded beneath multiple layers of collagen-impregnated cellulose scaffold strips containing human shoulder joint capsular fibroblasts, facilitating the development of an oxygen gradient with an anaerobic environment around the foil and inner layers. Ten milligrams of vancomycin powder was applied between the C acnes layer and the human cell-containing scaffold strips to model direct antibiotic application, and intravenous vancomycin prophylaxis was modeled by adding vancomycin in media at 5 or 20 µg/mL. After 48 hours, the C acnes inoculum layer was subcultured from each S-JIM onto agar plates to assess the formation of viable C acnes colonies. Primary human shoulder capsule cells were assessed microscopically to detect any detrimental effects of vancomycin on cellular integrity. RESULTS: Agar plates inoculated with extracts from untreated S-JIMs consistently resulted in the growth of large numbers of C acnes colonies, whereas treatments with vancomycin powder or vancomycin in media at 20-µg/mL dilution effectively prevented the recovery of any C acnes colonies. The lowest vancomycin dilution tested (5 µg/mL) was insufficient to prevent the recovery of C acnes colonies. Vancomycin powder had no discernible short-term impact on shoulder capsule cell morphology, and the presence of these cells had no discernible impact on vancomycin degradation over time. CONCLUSIONS: Vancomycin administration effectively prevented C acnes growth in a bioartificial S-JIM. These results support the hypothesis that intra-incisional vancomycin application may limit C acnes prosthetic joint infections.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Artroplastia , Humanos , Propionibacterium acnes , Articulação do Ombro/cirurgia , Vancomicina
6.
PLoS One ; 16(9): e0257471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520499

RESUMO

16S rRNA gene sequencing of DNA extracted from clinically uninfected hip and knee implant samples has revealed polymicrobial populations. However, previous studies assessed 16S rRNA gene sequencing as a technique for the diagnosis of periprosthetic joint infections, leaving the microbiota of presumed aseptic hip and knee implants largely unstudied. These communities of microorganisms might play important roles in aspects of host health, such as aseptic loosening. Therefore, this study sought to characterize the bacterial composition of presumed aseptic joint implant microbiota using next generation 16S rRNA gene sequencing, and it evaluated this method for future investigations. 248 samples were collected from implants of 41 patients undergoing total hip or knee arthroplasty revision for presumed aseptic failure. DNA was extracted using two methodologies-one optimized for high throughput and the other for human samples-and amplicons of the V4 region of the 16S rRNA gene were sequenced. Sequencing data were analyzed and compared with ancillary specific PCR and microbiological culture. Computational tools (SourceTracker and decontam) were used to detect and compensate for environmental and processing contaminants. Microbial diversity of patient samples was higher than that of open-air controls and differentially abundant taxa were detected between these conditions, possibly reflecting a true microbiota that is present in clinically uninfected joint implants. However, positive control-associated artifacts and DNA extraction methodology significantly affected sequencing results. As well, sequencing failed to identify Cutibacterium acnes in most culture- and PCR-positive samples. These challenges limited characterization of bacteria in presumed aseptic implants, but genera were identified for further investigation. In all, we provide further support for the hypothesis that there is likely a microbiota present in clinically uninfected joint implants, and we show that methods other than 16S rRNA gene sequencing may be ideal for its characterization. This work has illuminated the importance of further study of microbiota of clinically uninfected joint implants with novel molecular and computational tools to further eliminate contaminants and artifacts that arise in low bacterial abundance samples.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Infecções Relacionadas à Prótese/microbiologia , Adulto , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Artefatos , Bactérias/genética , Feminino , Articulação do Quadril/microbiologia , Humanos , Articulação do Joelho/microbiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Infecções Relacionadas à Prótese/patologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
7.
Wound Repair Regen ; 29(4): 627-636, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34212454

RESUMO

Dupuytren's disease (DD) is a common and heritable fibrosis of the hand. It is characterized by the shortening and thickening of the palmar fascia into myofibroblastic nodules that can progress to palmar-digital contractures and permanent loss of dexterity. Molecular analyses of DD tissues and the presence of inflammatory cell infiltrates suggest a pathogenesis initiated by a proinflammatory fascial milieu that promotes myofibroblast activation and palmar fascia contractures. However, the relative contributions of vascular and/or tissue derived immune system cells and cytokine-sensitive stromal myofibroblasts to the development of this proinflammatory microenvironment are poorly understood. To gain insights into this process, we have developed and tested a collagen-based 3D tissue biomimetic co-culture system to assess paracrine interactions between THP-1-derived pro-inflammatory macrophages and primary human palmar fascia myofibroblasts (PFMs). We observed significant and reproducible impacts of collagen-adherent macrophage and PFM co-cultures on the cytokine gene expression profiles of these cells compared to their respective monocultures, and significant changes to the resulting cytokine milieu in their shared culture media, notably TNF and IL-6. Our findings are consistent with central roles for PFMs in cytokine production and immunoregulation of the pro-inflammatory milieu hypothesized to promote DD development.


Assuntos
Contratura de Dupuytren , Biomimética , Citocinas , Fáscia , Humanos , Macrófagos , Miofibroblastos , Microambiente Tumoral , Cicatrização
8.
Crit Care Explor ; 3(3): e0369, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33786445

RESUMO

OBJECTIVES: Coronavirus disease 2019 continues to spread worldwide with high levels of morbidity and mortality. We performed anticoronavirus immunoglobulin G profiling of critically ill coronavirus disease 2019 patients to better define their underlying humoral response. DESIGN: Blood was collected at predetermined ICU days to measure immunoglobulin G with a research multiplex assay against four severe acute respiratory syndrome coronavirus 2 proteins/subunits and against all six additionally known human coronaviruses. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: ICU patients suspected of being infected with severe acute respiratory syndrome coronavirus 2 had blood collected until either polymerase chain reaction testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative) or until death or discharge if the patient tested polymerase chain reaction positive (coronavirus disease 2019 positive). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Age- and sex-matched healthy controls and ICU patients who were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients had greater body mass indexes, presented with bilateral pneumonias more frequently, and suffered lower Pao2:Fio2 ratios, when compared with coronavirus disease 2019 negative patients (p < 0.05). Mortality rate for coronavirus disease 2019 positive patients was 50%. On ICU days 1-3, anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin G was significantly elevated in coronavirus disease 2019 positive patients, as compared to both healthy control subjects and coronavirus disease 2019 negative patients (p < 0.001). Weak severe acute respiratory syndrome coronavirus immunoglobulin G serologic responses were also detected, but not other coronavirus subtypes. The four anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin G were maximal by ICU day 3, with all four anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin G providing excellent diagnostic potential (severe acute respiratory syndrome coronavirus 2 Spike 1 protein immunoglobulin G, area under the curve 1.0, p < 0.0005; severe acute respiratory syndrome coronavirus receptor binding domain immunoglobulin G, area under the curve, 0.93-1.0; p ≤ 0.0001; severe acute respiratory syndrome coronavirus 2 Spike proteins immunoglobulin G, area under the curve, 1.0; p < 0.0001; severe acute respiratory syndrome coronavirus 2 Nucleocapsid protein immunoglobulin G area under the curve, 0.90-0.95; p ≤ 0.0003). Anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin G increased and/or plateaued over 10 ICU days. CONCLUSIONS: Critically ill coronavirus disease 2019 patients exhibited anti-severe acute respiratory syndrome coronavirus 2 immunoglobulin G, whereas serologic responses to non-severe acute respiratory syndrome coronavirus 2 antigens were weak or absent. Detection of human coronavirus immunoglobulin G against the different immunogenic structural proteins/subunits with multiplex assays may be useful for pathogen identification, patient cohorting, and guiding convalescent plasma therapy.

9.
Pathophysiology ; 28(2): 212-223, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35366258

RESUMO

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global health care emergency. Anti-SARS-CoV-2 serological profiling of critically ill COVID-19 patients was performed to determine their humoral response. Blood was collected from critically ill ICU patients, either COVID-19 positive (+) or COVID-19 negative (-), to measure anti-SARS-CoV-2 immunoglobulins: IgM; IgA; IgG; and Total Ig (combined IgM/IgA/IgG). Cohorts were similar, with the exception that COVID-19+ patients had a greater body mass indexes, developed bilateral pneumonias more frequently and suffered increased hypoxia when compared to COVID-19- patients (p < 0.05). The mortality rate for COVID-19+ patients was 50%. COVID-19 status could be determined by anti-SARS-CoV-2 serological responses with excellent classification accuracies on ICU day 1 (89%); ICU day 3 (96%); and ICU days 7 and 10 (100%). The importance of each Ig isotype for determining COVID-19 status on combined ICU days 1 and 3 was: Total Ig, 43%; IgM, 27%; IgA, 24% and IgG, 6%. Peak serological responses for each Ig isotype occurred on different ICU days (IgM day 13 > IgA day 17 > IgG persistently increased), with the Total Ig peaking at approximately ICU day 18. Those COVID-19+ patients who died had earlier or similar peaks in IgA and Total Ig in their ICU stay when compared to patients who survived (p < 0.005). Critically ill COVID-19 patients exhibit anti-SARS-CoV-2 serological responses, including those COVID-19 patients who ultimately died, suggesting that blunted serological responses did not contribute to mortality. Serological profiling of critically ill COVID-19 patients may aid disease surveillance, patient cohorting and help guide antibody therapies such as convalescent plasma.

10.
Emerg Med Australas ; 33(1): 152-154, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33124718

RESUMO

OBJECTIVE: To review the impact of COVID-19 social restrictions on trauma presentations in South Australia. METHODS: Retrospective database review. RESULTS: During the period of social restrictions, there was a reduction in presentations of trauma and major trauma by 17% and 33%, respectively. The reduction in presentation rates was due to a large decrease in those aged over 40, with an increase in presentations in those younger than 40. Review by mechanism and location of injury revealed a reduction in road trauma, yet an increase in pedestrian trauma and trauma at home. CONCLUSION: Social restrictions alter the characteristics of trauma presentations.


Assuntos
Quarentena , Ferimentos e Lesões/epidemiologia , Adolescente , Adulto , Fatores Etários , COVID-19/epidemiologia , COVID-19/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Quarentena/estatística & dados numéricos , Estudos Retrospectivos , Austrália do Sul/epidemiologia , Adulto Jovem
11.
Intensive Care Med Exp ; 8(1): 75, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306162

RESUMO

BACKGROUND: COVID19 is caused by the SARS-CoV-2 virus and has been associated with severe inflammation leading to organ dysfunction and mortality. Our aim was to profile the transcriptome in leukocytes from critically ill patients positive for COVID19 compared to those negative for COVID19 to better understand the COVID19-associated host response. For these studies, all patients admitted to our tertiary care intensive care unit (ICU) suspected of being infected with SARS-CoV-2, using standardized hospital screening methodologies, had blood samples collected at the time of admission to the ICU. Transcriptome profiling of leukocytes via ribonucleic acid sequencing (RNAseq) was then performed and differentially expressed genes as well as significantly enriched gene sets were identified. RESULTS: We enrolled seven COVID19 + (PCR positive, 2 SARS-CoV-2 genes) and seven age- and sex-matched COVID19- (PCR negative) control ICU patients. Cohorts were well-balanced with the exception that COVID19- patients had significantly higher total white blood cell counts and circulating neutrophils and COVID19 + patients were more likely to suffer bilateral pneumonia. The mortality rate for this cohort of COVID19 + ICU patients was 29%. As indicated by both single-gene based and gene set (GSEA) approaches, the major disease-specific transcriptional responses of leukocytes in critically ill COVID19 + ICU patients were: (i) a robust overrepresentation of interferon-related gene expression; (ii) a marked decrease in the transcriptional level of genes contributing to general protein synthesis and bioenergy metabolism; and (iii) the dysregulated expression of genes associated with coagulation, platelet function, complement activation, and tumour necrosis factor/interleukin 6 signalling. CONCLUSIONS: Our findings demonstrate that critically ill COVID19 + patients on day 1 of admission to the ICU display a unique leukocyte transcriptional profile that distinguishes them from COVID19- patients, providing guidance for future targeted studies exploring novel prognostic and therapeutic aspects of COVID19.

12.
Crit Care Explor ; 2(10): e0272, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33134953

RESUMO

OBJECTIVES: Coronavirus disease 2019 continues to spread rapidly with high mortality. We performed metabolomics profiling of critically ill coronavirus disease 2019 patients to understand better the underlying pathologic processes and pathways, and to identify potential diagnostic/prognostic biomarkers. DESIGN: Blood was collected at predetermined ICU days to measure the plasma concentrations of 162 metabolites using both direct injection-liquid chromatography-tandem mass spectrometry and proton nuclear magnetic resonance. SETTING: Tertiary-care ICU and academic laboratory. SUBJECTS: Patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had blood samples collected until either testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative) or until ICU day 10 if the patient tested positive (coronavirus disease 2019 positive). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Age- and sex-matched healthy controls and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients suffered bilateral pneumonia more frequently than coronavirus disease 2019 negative patients. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Feature selection identified the top-performing metabolites for identifying coronavirus disease 2019 positive patients from healthy control subjects and was dominated by increased kynurenine and decreased arginine, sarcosine, and lysophosphatidylcholines. Arginine/kynurenine ratio alone provided 100% classification accuracy between coronavirus disease 2019 positive patients and healthy control subjects (p = 0.0002). When comparing the metabolomes between coronavirus disease 2019 positive and coronavirus disease 2019 negative patients, kynurenine was the dominant metabolite and the arginine/kynurenine ratio provided 98% classification accuracy (p = 0.005). Feature selection identified creatinine as the top metabolite for predicting coronavirus disease 2019-associated mortality on both ICU days 1 and 3, and both creatinine and creatinine/arginine ratio accurately predicted coronavirus disease 2019-associated death with 100% accuracy (p = 0.01). CONCLUSIONS: Metabolomics profiling with feature classification easily distinguished both healthy control subjects and coronavirus disease 2019 negative patients from coronavirus disease 2019 positive patients. Arginine/kynurenine ratio accurately identified coronavirus disease 2019 status, whereas creatinine/arginine ratio accurately predicted coronavirus disease 2019-associated death. Administration of tryptophan (kynurenine precursor), arginine, sarcosine, and/or lysophosphatidylcholines may be considered as potential adjunctive therapies.

13.
Crit Care Explor ; 2(9): e0194, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904031

RESUMO

OBJECTIVES: Coronavirus disease 2019 is caused by the novel severe acute respiratory syndrome coronavirus 2 virus. Patients admitted to the ICU suffer from microvascular thrombosis, which may contribute to mortality. Our aim was to profile plasma thrombotic factors and endothelial injury markers in critically ill coronavirus disease 2019 ICU patients to help understand their thrombotic mechanisms. DESIGN: Daily blood coagulation and thrombotic factor profiling with immunoassays and in vitro experiments on human pulmonary microvascular endothelial cells. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had daily blood samples collected until testing was confirmed coronavirus disease 2019 negative on either ICU day 3 or ICU day 7 if the patient was coronavirus disease 2019 positive. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Age- and sex-matched healthy control subjects and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Compared with healthy control subjects, coronavirus disease 2019 positive patients had higher plasma von Willebrand factor (p < 0.001) and glycocalyx-degradation products (chondroitin sulfate and syndecan-1; p < 0.01). When compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had persistently higher soluble P-selectin, hyaluronic acid, and syndecan-1 (p < 0.05), particularly on ICU day 3 and thereafter. Thrombosis profiling on ICU days 1-3 predicted coronavirus disease 2019 status with 85% accuracy and patient mortality with 86% accuracy. Surface hyaluronic acid removal from human pulmonary microvascular endothelial cells with hyaluronidase treatment resulted in depressed nitric oxide, an instigating mechanism for platelet adhesion to the microvascular endothelium. CONCLUSIONS: Thrombosis profiling identified endothelial activation and glycocalyx degradation in coronavirus disease 2019 positive patients. Our data suggest that medications to protect and/or restore the endothelial glycocalyx, as well as platelet inhibitors, should be considered for further study.

14.
Crit Care Explor ; 2(9): e0189, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904064

RESUMO

OBJECTIVES: Coronavirus disease 2019 patients admitted to the ICU have high mortality. The host response to coronavirus disease 2019 has only been partially elucidated, and prognostic biomarkers have not been identified. We performed targeted proteomics on critically ill coronavirus disease 2019 patients to better understand their pathophysiologic mediators and to identify potential outcome markers. DESIGN: Blood was collected at predetermined ICU days for proximity extension assays to determine the plasma concentrations of 1,161 proteins. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome coronavirus 2, using standardized hospital screening methodologies, had blood samples collected until either testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative) or until ICU day 10 if the patient positive (coronavirus disease 2019 positive). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Age- and sex-matched healthy control subjects and ICU patients who were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients suffered bilateral pneumonia more frequently than coronavirus disease 2019 negative patients. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. Feature selection identified the top performing proteins for identifying coronavirus disease 2019 positive ICU patients from both healthy control subjects and coronavirus disease 2019 negative ICU patients (classification accuracies 100%). The coronavirus disease 2019 proteome was dominated by interleukins and chemokines, as well as several membrane receptors linked to lymphocyte-associated microparticles and/or cell debris. Mortality was predicted for coronavirus disease 2019 positive patients based on plasma proteome profiling on both ICU day 1 (accuracy 92%) and ICU day 3 (accuracy 83%). Promising prognostic proteins were then narrowed down to six, each of which provided excellent classification performance for mortality when measured on ICU day 1 CMRF-35-like molecule, interleukin receptor-12 subunit B1, cluster of differentiation 83 [CD83], family with sequence similarity 3, insulin-like growth factor 1 receptor and opticin; area-under-the-curve =1.0; p = 0.007). CONCLUSIONS: Targeted proteomics with feature classification easily distinguished both healthy control subjects and coronavirus disease 2019 tested negative ICU patients from coronavirus disease 2019 tested positive ICU patients. Multiple proteins were identified that accurately predicted coronavirus disease 2019 tested positive patient mortality.

15.
Crit Care Explor ; 2(6): e0144, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32696007

RESUMO

OBJECTIVES: Coronavirus disease 2019 is caused by severe acute respiratory syndrome-coronavirus-2 infection to which there is no community immunity. Patients admitted to ICUs have high mortality, with only supportive therapies available. Our aim was to profile plasma inflammatory analytes to help understand the host response to coronavirus disease 2019. DESIGN: Daily blood inflammation profiling with immunoassays. SETTING: Tertiary care ICU and academic laboratory. SUBJECTS: All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome-coronavirus-2, using standardized hospital screening methodologies, had daily blood samples collected until either testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative), or until ICU day 7 if the patient was positive (coronavirus disease 2019 positive). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Age- and sex-matched healthy controls and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. We measured 57 inflammatory analytes and then analyzed with both conventional statistics and machine learning. Twenty inflammatory analytes were different between coronavirus disease 2019 positive patients and healthy controls (p < 0.01). Compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had 17 elevated inflammatory analytes on one or more of their ICU days 1-3 (p < 0.01), with feature classification identifying the top six analytes between cohorts as tumor necrosis factor, granzyme B, heat shock protein 70, interleukin-18, interferon-gamma-inducible protein 10, and elastase 2. While tumor necrosis factor, granzyme B, heat shock protein 70, and interleukin-18 were elevated for all seven ICU days, interferon-gamma-inducible protein 10 transiently elevated on ICU days 2 and 3 and elastase 2 increased over ICU days 2-7. Inflammation profiling predicted coronavirus disease 2019 status with 98% accuracy, whereas elevated heat shock protein 70 was strongly associated with mortality. CONCLUSIONS: While many inflammatory analytes were elevated in coronavirus disease 2019 positive ICU patients, relative to healthy controls, the top six analytes distinguishing coronavirus disease 2019 positive ICU patients from coronavirus disease 2019 negative ICU patients were tumor necrosis factor, granzyme B, heat shock protein 70, interleukin-18, interferon-gamma-inducible protein 10, and elastase 2.

16.
Data Brief ; 29: 105312, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32140521

RESUMO

The spectra presented correspond with the research article entitled "Kinetics of Formic Acid Decomposition in Subcritical and Supercritical Water - A Raman Spectroscopic Study" [1]. Data set contains in situ Raman spectra of the quenched effluent stream, which includes varied concentrations of formic acid, water, CO, CO2, and H2 as reaction products. Each spectrum is collected downstream of the subcritical or supercritical water gasification of formic acid, which occurs at a specified temperature, residence time, a constant pressure of 25 MPa, and a constant initial feedstock concentration of 3.6 wt% formic acid. Additionally, calibration spectra of formic acid in water, and spectra of pure carbon dioxide and high concentration formic acid are provided for model development. Finally, a MATLAB code used for baseline subtraction of raw data files is included with the dataset. The full dataset is hosted in Mendeley Data, https://doi.org/10.17632/hjn8xwskng.1.

17.
J Cardiothorac Surg ; 14(1): 170, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533849

RESUMO

BACKGROUND: Finegoldia magna, a Gram-positive anaerobic coccus, is part of the human normal microbiota as a commensal of mucocutaneous surfaces. However, it remains an uncommon pathogen in infective endocarditis, with only eight clinical cases previously reported in the literature. Currently, infective endocarditis is routinely treated with prolonged intravenous antibiotic therapy. However, recent research has found that switching patients to oral antibiotics is non-inferior to prolonged parenteral antibiotic treatment, challenging the current guidelines for the treatment of infective endocarditis. CASE PRESENTATION: This case report focuses on a 52-year-old gentleman, who presented with initially culture-negative infective endocarditis following bioprosthetic aortic valve replacement. Blood cultures later grew Finegoldia magna. Following initial intravenous antibiotic therapy and re-do surgical replacement of the prosthetic aortic valve, the patient was successfully switched to oral antibiotic monotherapy, an unusual strategy in the treatment of infective endocarditis inspired by the recent publication of the POET trial. He made excellent progress on an eight-week course of oral antibiotics and was successfully discharged from surgical follow-up. CONCLUSIONS: This case is the 9th reported case of Finegoldia magna infective endocarditis in the literature. Our case also raises the possibility of a more patient-friendly and cost-effective means of providing long-term antibiotic therapy in suitable patients with prosthetic valve endocarditis and suggests that the principles highlighted in the POET trial can also be applicable to post-operative patients after cardiac surgery.


Assuntos
Antibacterianos/uso terapêutico , Bioprótese/efeitos adversos , Endocardite Bacteriana/tratamento farmacológico , Firmicutes , Próteses Valvulares Cardíacas/efeitos adversos , Infecções Relacionadas à Prótese/tratamento farmacológico , Administração Oral , Valva Aórtica/cirurgia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade
18.
mSphere ; 4(5)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484739

RESUMO

Urgency urinary incontinence (UUI) and overactive bladder (OAB) can both potentially be influenced by commensal and urinary tract infection-associated bacteria. The sensing of bladder filling involves interplay between various components of the nervous system, eventually resulting in contraction of the detrusor muscle during micturition. This study models host responses to various urogenital bacteria, first by using urothelial bladder cell lines and then with myofibroblast contraction assays. To measure responses, we examined Ca2+ influx, gene expression, and alpha smooth muscle actin deposition assays. Organisms such as Escherichia coli and Gardnerella vaginalis were found to strongly induce Ca2+ influx and contraction, whereas Lactobacillus crispatus and L. gasseri did not induce this response. Additionally, supernatants from lactobacilli impeded Ca2+ influx and contraction induced by uropathogens. Upon further investigation of factors associated with purinergic signaling pathways, the Ca2+ influx and contraction of cells correlated with the amount of extracellular ATP produced by E. coli Certain lactobacilli appear to mitigate this response by utilizing extracellular ATP or producing inhibitory compounds that may act as a receptor agonist or Ca2+ channel blocker. These findings suggest that members of the urinary microbiota may be influencing UUI or OAB.IMPORTANCE The ability of uropathogenic bacteria to release excitatory compounds, such as ATP, may act as a virulence factor to stimulate signaling pathways that could have profound effects on the urothelium, perhaps extending to the vagina. This may be countered by the ability of certain commensal urinary microbiota constituents, such as lactobacilli. Further understanding of these interactions is important for the treatment and prevention of UUI and OAB. The clinical implications may require a more targeted approach to enhance the commensal bacteria and reduce ATP release by pathogens.


Assuntos
Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Cálcio/metabolismo , Miofibroblastos/citologia , Bexiga Urinária/microbiologia , Actinas/fisiologia , Bactérias/patogenicidade , Linhagem Celular , Colágeno/fisiologia , Humanos , Lactobacillales , Microbiota , Contração Muscular , Miofibroblastos/microbiologia , Simbiose , Bexiga Urinária/fisiologia , Urotélio/citologia
20.
Heliyon ; 5(2): e01269, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30886924

RESUMO

Optimizing an industrial-scale supercritical water gasification process requires detailed knowledge of chemical reaction pathways, rates, and product yields. Laboratory-scale reactors are employed to develop this knowledge base. The rationale behind designs and component selection of continuous flow, laboratory-scale supercritical water gasification reactors is analyzed. Some design challenges have standard solutions, such as pressurization and preheating, but issues with solid precipitation and feedstock pretreatment still present open questions. Strategies for reactant mixing must be evaluated on a system-by-system basis, depending on feedstock and experimental goals, as mixing can affect product yields, char formation, and reaction pathways. In-situ Raman spectroscopic monitoring of reaction chemistry promises to further fundamental knowledge of gasification and decrease experimentation time. High-temperature, high-pressure spectroscopy in supercritical water conditions is performed, however, long-term operation flow cell operation is challenging. Comparison of Raman spectra for decomposition of formic acid in the supercritical region and cold section of the reactor demonstrates the difficulty in performing quantitative spectroscopy in the hot zone. Future designs and optimization of continuous supercritical water gasification reactors should consider well-established solutions for pressurization, heating, and process monitoring, and effective strategies for mixing and solids handling for long-term reactor operation and data collection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...