Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838211

RESUMO

Given the novelty of the industrial production of the edible insects sector, research has primarily focused on the zootechnical performances of black soldier fly larvae (BSFL) in response to different substrates and rearing conditions as a basis to optimize yield and quality. However recently, research has started to focus more on the associated microbes in the larval digestive system and their substrates and the effect of manipulating the composition of these communities on insect performance as a form of microbiome engineering. Here we present an overview of the existing literature on the use of microorganisms during rearing of the BSFL to optimize the productivity of this insect. These studies have had variable outcomes and potential explanations for this variation are offered to inspire future research that might lead to a better success rate for microbiome engineering in BSFL.

2.
Front Microbiol ; 12: 665546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054771

RESUMO

This study aimed to establish a representative strain collection of dominant aerobic bacteria from black soldier fly larvae (Hermetia illucens, BSFL). The larvae were fed either chicken feed or fiber-rich substrates to obtain a collection of BSFL-associated microorganisms. Via an approach based on only considering the highest serial dilutions of BSFL extract (to select for the most abundant strains), a total of 172 bacteria were isolated. Identification of these isolates revealed that all bacteria belonged to either the Proteobacteria (66.3%), the Firmicutes (30.2%), the Bacteroidetes (2.9%) or the Actinobacteria (0.6%). Twelve genera were collected, with the most abundantly present ones (i.e., minimally present in at least three rearing cycles) being Enterococcus (29.1%), Escherichia (22.1%), Klebsiella (19.8%), Providencia (11.6%), Enterobacter (7.6%), and Morganella (4.1%). Our collection of dominant bacteria reflects largely the bacterial profiles of BSFL already described in literature with respect to the most important phyla and genera in the gut, but some differences can be noticed depending on substrate, biotic and abiotic factors. Furthermore, this bacterial collection will be the starting point to improve in vitro digestion models for BSFL, to develop mock communities and to find symbionts that can be added during rearing cycles to enhance the larval performances, after functional characterization of the isolates, for instance with respect to enzymatic potential.

3.
Front Microbiol ; 12: 643679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897654

RESUMO

Three characteristics are considered key for optimal use of composts in growing media: maturity, pH and organic matter content. Maturation is a critical step in the processing of composts contributing to compost quality. Blending of composts with chopped heath biomass, sieving out the larger fraction of composts and acidification of composts by adding elemental sulfur may be used either to increase organic matter content or to reduce pH for a better fit in growing media. While several studies have shown the effectiveness of these treatments to improve the use of composts in growing media, the effect of these treatments on the compost microbiome has merely been assessed before. In the present study, five immature composts were allowed to mature, and were subsequently acidified, blended or sieved. Bacterial and fungal communities of the composts were characterized and quantified using 16S rRNA and ITS2 gene metabarcoding and phospholipid fatty acid analysis. Metabolic biodiversity and activity were analyzed using Biolog EcoPlates. Compost batch was shown to be more important than maturation or optimization treatments to determine the compost microbiome. Compost maturation increased microbial diversity and favored beneficial microorganisms, which may be positive for the use of composts in growing media. Blending of composts increased microbial diversity, metabolic diversity, and metabolic activity, which may have a positive effect in growing media. Blending may be used to modify the microbiome to a certain degree in order to optimize microbiological characteristics. Acidification caused a decrease in bacterial diversity and microbial activity, which may be negative for the use in growing media, although the changes are limited. Sieving had limited effect on the microbiome of composts. Because of the limited effect on the microbiome, sieving of composts may be used flexible to improve (bio)chemical characteristics. This is the first study to assess the effects of maturation and optimization treatments to either increase organic matter content or lower pH in composts on the compost microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...