Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474754

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Avaliação Pré-Clínica de Medicamentos , Inibidor Tecidual de Metaloproteinase-1 , Inflamação
2.
J Cachexia Sarcopenia Muscle ; 14(4): 1865-1879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386912

RESUMO

BACKGROUND: Loss of muscle mass is linked with impaired quality of life and an increased risk of morbidity and premature mortality. Iron is essential for cellular processes such as energy metabolism, nucleotide synthesis and numerous enzymatic reactions. As the effects of iron deficiency (ID) on muscle mass and function are largely unknown, we aimed to assess the relation between ID and muscle mass in a large population-based cohort, and subsequently studied effects of ID on cultured skeletal myoblasts and differentiated myocytes. METHODS: In a population-based cohort of 8592 adults, iron status was assessed by plasma ferritin and transferrin saturation, and muscle mass was estimated using 24-h urinary creatinine excretion rate (CER). The relationships of ferritin and transferrin saturation with CER were assessed by multivariable logistic regression. Furthermore, mouse C2C12 skeletal myoblasts and differentiated myocytes were subjected to deferoxamine with or without ferric citrate. Myoblast proliferation was measured with a colorimetric 5-bromo-2'-deoxy-uridine ELISA assay. Myocyte differentiation was assessed using Myh7-stainings. Myocyte energy metabolism, oxygen consumption rate and extracellular acidification rate were assessed using Seahorse mitochondrial flux analysis, and apoptosis rate with fluorescence-activated cell sorting. RNA sequencing (RNAseq) was used to identify ID-related gene and pathway enrichment in myoblasts and myocytes. RESULTS: Participants in the lowest age- and sex-specific quintile of plasma ferritin (OR vs middle quintile 1.62, 95% CI 1.25-2.10, P < 0.001) or transferrin saturation (OR 1.34, 95% CI 1.03-1.75, P = 0.03) had a significantly higher risk of being in the lowest age- and sex-specific quintile of CER, independent of body mass index, estimated GFR, haemoglobin, hs-CRP, urinary urea excretion, alcohol consumption and smoking status. In C2C12 myoblasts, deferoxamine-induced ID reduced myoblast proliferation rate (P-trend <0.001) but did not affect differentiation. In myocytes, deferoxamine reduced myoglobin protein expression (-52%, P < 0.001) and tended to reduce mitochondrial oxygen consumption capacity (-28%, P = 0.10). Deferoxamine induced gene expression of cellular atrophy markers Trim63 (+20%, P = 0.002) and Fbxo32 (+27%, P = 0.048), which was reversed by ferric citrate (-31%, P = 0.04 and -26%, P = 0.004, respectively). RNAseq indicated that both in myoblasts and myocytes, ID predominantly affected genes involved in glycolytic energy metabolism, cell cycle regulation and apoptosis; co-treatment with ferric citrate reversed these effects. CONCLUSIONS: In population-dwelling individuals, ID is related to lower muscle mass, independent of haemoglobin levels and potential confounders. ID impaired myoblast proliferation and aerobic glycolytic capacity, and induced markers of myocyte atrophy and apoptosis. These findings suggest that ID contributes to loss of muscle mass.


Assuntos
Deficiências de Ferro , Mioblastos Esqueléticos , Animais , Feminino , Masculino , Camundongos , Atrofia , Proliferação de Células , Desferroxamina/farmacologia , Ferritinas , Vida Independente , Ferro/metabolismo , Músculos/metabolismo , Qualidade de Vida , Transferrinas , Humanos , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA