Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38758215

RESUMO

Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.


Assuntos
Guanosina Difosfato , Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Guanosina Difosfato/metabolismo , Animais , Guanosina Trifosfato/metabolismo , Humanos
2.
Methods Mol Biol ; 2430: 375-383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476345

RESUMO

Neuronal microtubules have long been known to contain intraluminal particles, called MIPs (microtubule inner proteins), most likely involved in the extreme stability of microtubules in neurons. This chapter describes a cryo-electron microscopy-based assay to visualize microtubules containing neuronal MIPs. We present two protocols to prepare MIPs-containing microtubules, using either in vitro microtubule polymerization assays or extraction of microtubules from mouse hippocampal neurons in culture.


Assuntos
Microtúbulos , Neurônios , Animais , Microscopia Crioeletrônica/métodos , Hipocampo , Camundongos , Microtúbulos/metabolismo
3.
Brain ; 145(7): 2486-2506, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35148384

RESUMO

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Tubulina (Proteína) , Doença de Alzheimer/metabolismo , Animais , Humanos , Camundongos , Microtúbulos , Peptídeos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
4.
Elife ; 102021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860155

RESUMO

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.


Assuntos
Fórnice/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Semaforinas/genética , Transdução de Sinais , Animais , Feminino , Fórnice/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Semaforinas/metabolismo
5.
Front Mol Neurosci ; 14: 665693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025352

RESUMO

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs-including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);-were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6's effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.

6.
Front Pharmacol ; 12: 627995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790791

RESUMO

The search for effective treatments for neuropsychiatric disorders is ongoing, with progress being made as brain structure and neuronal function become clearer. The central roles played by microtubules (MT) and actin in synaptic transmission and plasticity suggest that the cytoskeleton and its modulators could be relevant targets for the development of new molecules to treat psychiatric diseases. In this context, LIM Kinase - which regulates both the actin and MT cytoskeleton especially in dendritic spines, the post-synaptic compartment of the synapse - might be a good target. In this study, we analyzed the consequences of blocking LIMK1 pharmacologically using Pyr1. We investigated synaptic plasticity defects and behavioral disorders in MAP6 KO mice, an animal model useful for the study of psychiatric disorders, particularly schizophrenia. Our results show that Pyr1 can modulate MT dynamics in neurons. In MAP6 KO mice, chronic LIMK inhibition by long-term treatment with Pyr1 can restore normal dendritic spine density and also improves long-term potentiation, both of which are altered in these mice. Pyr1 treatment improved synaptic plasticity, and also reduced social withdrawal and depressive/anxiety-like behavior in MAP6 KO mice. Overall, the results of this study validate the hypothesis that modulation of LIMK activity could represent a new therapeutic strategy for neuropsychiatric diseases.

7.
PLoS One ; 15(7): e0234529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32673338

RESUMO

Morphometry characterization is an important procedure in describing neuronal cultures and identifying phenotypic differences. This task usually requires labor-intensive measurements and the classification of numerous neurites from large numbers of neurons in culture. To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that measures and classifies neurites from a very large number of neurons. We showed that AutoNeuriteJ is able to detect variations of neuritic growth induced by several compounds known to affect the neuronal growth. In these experiments measurement of more than 5000 mouse neurons per conditions was obtained within a few hours. Moreover, by analyzing mouse neurons deficient for the microtubule associated protein 6 (MAP6) and wild type neurons we illustrate that AutoNeuriteJ is capable to detect subtle phenotypic difference in axonal length. Overall the use of AutoNeuriteJ will provide rapid, unbiased and accurate measurement of neuron morphologies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neuritos/metabolismo , Neurônios/fisiologia , Animais , Axônios/fisiologia , Proliferação de Células , Células Cultivadas , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/fisiologia , Software
8.
Sci Adv ; 6(14): eaaz4344, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270043

RESUMO

Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Neuritos , Neurônios/ultraestrutura , Ligação Proteica , Transporte Proteico
9.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31363758

RESUMO

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Assuntos
Encéfalo/anormalidades , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Immunoblotting , Imageamento por Ressonância Magnética , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
10.
Neuropharmacology ; 159: 107334, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236964

RESUMO

Social and communication impairments are common features of psychiatric disorders. Animal models of schizophrenia display various social deficits due to difference in tests, mouse strains and drugs. Moreover, communication deficits have not been studied. Our objectives were to assess and compare three major features of social cognition in different mouse models of schizophrenia: interest for a social stimulus, organization and acceptance of social contact, and acoustic communication to question whether mouse models for schizophrenia with social dysfunction also exhibit vocal communication defects. To achieve these aims we treated acutely C57BL/6J mice either with MK-801 or ketamine and tested WT and microtubule-associated protein 6 -MAP6- KO mice in two complementary social tasks: the 3-chamber test which measures social motivation and the social interaction task -SIT- which relies on prefrontal cortex activity and measures the ability to organize and respond to a real interaction, and which promotes ultrasonic vocalizations. Our results reveal that schizophrenia models have intact interest for a social stimulus in the 3-chamber test. However, thanks to principal component analyses of social interaction data, we demonstrate that social motivation and the ability to act socially rely on distinct mechanisms in revealing a decrease in dominance and communication in pharmacological schizophrenia models along with social withdraw, classically observed in schizophrenia, in MK-801 model. In this latter model, some social parameters can be significantly improved by aripiprazole, an atypical antipsychotic. Our social protocol, combined with fine-tuned analysis, is expected to provide an innovative framework for testing future treatments in preclinical models. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.


Assuntos
Cognição/fisiologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/metabolismo , Comportamento Social , Predomínio Social , Vocalização Animal/fisiologia , Animais , Antipsicóticos/uso terapêutico , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esquizofrenia/tratamento farmacológico , Vocalização Animal/efeitos dos fármacos
11.
Skelet Muscle ; 8(1): 30, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231928

RESUMO

BACKGROUND: The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. METHODS: The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student's t test or the Mann-Whitney test. RESULTS: We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. CONCLUSION: Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Fibras Musculares Esqueléticas/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Retículo Sarcoplasmático/metabolismo
12.
Nat Commun ; 9(1): 3775, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224655

RESUMO

Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines. We find that in MAP6-deficient cortical and hippocampal neurons, maintenance of mature spines is impaired, and can be restored by expressing a stretch of the MAP6 sequence called Mc modules. Mc modules directly bind actin filaments and mediate activity-dependent stabilisation of F-actin in dendritic spines, a key event of synaptic plasticity. In vitro, Mc modules enhance actin filament nucleation and promote the formation of stable, highly ordered filament bundles. Activity-induced phosphorylation of MAP6 likely controls its transfer to the spine cytoskeleton. These results provide a molecular explanation for the role of MAP6 in cognition, enlightening the connection between cytoskeletal dysfunction, synaptic impairment and neuropsychiatric illnesses.


Assuntos
Citoesqueleto de Actina/metabolismo , Dendritos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Hipocampo/citologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação , Fotodegradação
13.
Brain Stimul ; 11(6): 1336-1347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30146428

RESUMO

BACKGROUND: Severe and medication-resistant psychiatric diseases, such as major depressive disorder, bipolar disorder or schizophrenia, can be effectively and rapidly treated by electroconvulsive therapy (ECT). Despite extensive long-standing clinical use, the neurobiological mechanisms underlying the curative action of ECT remain incompletely understood. OBJECTIVE: Unravel biological basis of electroconvulsive stimulation (ECS) efficacy, the animal equivalent of ECT. METHODS: Using MAP6 KO mouse, a genetic model that constitutively exhibits features relevant to some aspects of depression; we analyzed the behavioral and biological consequences of ECS treatment alone (10 stimulations over a 2-week period) and associated with a continuation protocol (2 stimulations per week for 5 weeks). RESULTS: ECS treatment had a beneficial effect on constitutive behavioral defects. We showed that behavioral improvement is associated with a strong increase in the survival and integration of neurons born before ECS treatment. Retroviral infection revealed the larger number of integrated neurons to exhibit increased dendritic complexity and spine density, as well as remodeled synapses. Furthermore, our results show that ECS triggers a cortical increase in synaptogenesis. A sustained newborn neuron survival rate, induced by ECS treatment, is associated with the behavioral improvement, but relapse occurred 40 days after completing the ECS treatment. However, a 5-week continuation protocol following the initial ECS treatment led to persistent improvement of behavior correlated with sustained rate survival of newborn neurons. CONCLUSION: Altogether, these results reveal that increased synaptic connectivity and extended neuronal survival are key to the short and long-term efficacy of ECS.


Assuntos
Sobrevivência Celular/fisiologia , Depressão/terapia , Modelos Animais de Doenças , Eletroconvulsoterapia/métodos , Neurônios/fisiologia , Animais , Depressão/genética , Depressão/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/fisiologia , Fatores de Tempo , Resultado do Tratamento
14.
Eur J Neurosci ; 46(11): 2754-2767, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094416

RESUMO

MAP6 proteins were first described as microtubule-stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 - a dynein light chain with multiple non-microtubule-related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav 2.2/N-type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C-terminus of Cav 2.2/N-type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio/fisiologia , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Feminino , Hipocampo/citologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica
15.
Sci Rep ; 7(1): 10308, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871106

RESUMO

In the central nervous system, microtubule-associated protein 6 (MAP6) is expressed at high levels and is crucial for cognitive abilities. The large spectrum of social and cognitive impairments observed in MAP6-KO mice are reminiscent of the symptoms observed in psychiatric diseases, such as schizophrenia, and respond positively to long-term treatment with antipsychotics. MAP6-KO mice have therefore been proposed to be a useful animal model for these diseases. Here, we explored the brain anatomy in MAP6-KO mice using high spatial resolution 3D MRI, including a volumetric T1w method to image brain structures, and Diffusion Tensor Imaging (DTI) for white matter fiber tractography. 3D DTI imaging of neuronal tracts was validated by comparing results to optical images of cleared brains. Changes to brain architecture included reduced volume of the cerebellum and the thalamus and altered size, integrity and spatial orientation of some neuronal tracks such as the anterior commissure, the mammillary tract, the corpus callosum, the corticospinal tract, the fasciculus retroflexus and the fornix. Our results provide information on the neuroanatomical defects behind the neurological phenotype displayed in the MAP6-KO mice model and especially highlight a severe damage of the corticospinal tract with defasciculation at the location of the pontine nuclei.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional , Transtornos Mentais/diagnóstico , Transtornos Mentais/etiologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/deficiência , Vias Neurais
16.
Gene ; 600: 90-100, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27871923

RESUMO

The identification of common gene/protein profiles related to brain alterations, if they exist, may indicate the convergence of the pathogenic mechanisms driving brain disorders. Six genetically engineered mouse lines modelling neurodegenerative diseases and neuropsychiatric disorders were considered. Omics approaches, including transcriptomic and proteomic methods, were used. The gene/protein lists were used for inter-disease comparisons and further functional and network investigations. When the inter-disease comparison was performed using the gene symbol identifiers, the number of genes/proteins involved in multiple diseases decreased rapidly. Thus, no genes/proteins were shared by all 6 mouse models. Only one gene/protein (Gfap) was shared among 4 disorders, providing strong evidence that a common molecular signature does not exist among brain diseases. The inter-disease comparison of functional processes showed the involvement of a few major biological processes indicating that brain diseases of diverse aetiologies might utilize common biological pathways in the nervous system, without necessarily involving similar molecules.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , Genômica/métodos , Proteômica/métodos , Animais , Comportamento Animal , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
17.
Nat Commun ; 6: 7246, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26037503

RESUMO

Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.


Assuntos
Axônios/metabolismo , Fórnice/embriologia , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Citoesqueleto , Imagem de Tensor de Difusão , Fórnice/metabolismo , Fórnice/patologia , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Vias Neurais/embriologia , Vias Neurais/metabolismo , Neuritos/metabolismo , Técnicas de Rastreamento Neuroanatômico , Tamanho do Órgão , Semaforinas , Domínios de Homologia de src
18.
PLoS One ; 9(12): e114905, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526643

RESUMO

MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin. Here, we use heterologous systems to investigate several biochemical properties of MAP6 proteins. We demonstrate that the three N-terminal cysteines of MAP6d1 are palmitoylated by a subset of DHHC-type palmitoylating enzymes. Analysis of the subcellular localization of palmitoylated MAP6d1, including electron microscopic analysis, reveals possible localization to the Golgi and the plasma membrane but no association with the endoplasmic reticulum. Moreover, we observed localization of MAP6d1 to mitochondria, which requires the N-terminus of the protein but does not require palmitoylation. We show that endogenous MAP6d1 localized at mitochondria in mature mice neurons as well as at the outer membrane and in the intermembrane space of purified mouse mitochondria. Last, we found that MAP6d1 can multimerize via a microtubule-binding module. Interestingly, most of these properties of MAP6d1 are shared by MAP6-N. Together, these results describe several properties of MAP6 proteins, including their intercellular localization and multimerization activity, which may be relevant to neuronal differentiation and synaptic functions.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Células 3T3 , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Camundongos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Ligação Proteica , Multimerização Proteica , Transporte Proteico
19.
Neuroimage ; 96: 133-42, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24704457

RESUMO

The MAP6 (microtubule-associated protein 6) KO mouse is a microtubule-deficient model of schizophrenia that exhibits severe behavioral disorders that are associated with synaptic plasticity anomalies. These defects are alleviated not only by neuroleptics, which are the gold standard molecules for the treatment of schizophrenia, but also by Epothilone D (Epo D), which is a microtubule-stabilizing molecule. To compare the neuronal transport between MAP6 KO and wild-type mice and to measure the effect of Epo D treatment on neuronal transport in KO mice, MnCl2 was injected in the primary somatosensory cortex. Then, using manganese-enhanced magnetic resonance imaging (MEMRI), we followed the propagation of Mn(2+) through axonal tracts and brain regions that are connected to the somatosensory cortex. In MAP6 KO mice, the measure of the MRI relative signal intensity over 24h revealed that the Mn(2+) transport rate was affected with a stronger effect on long-range and polysynaptic connections than in short-range and monosynaptic tracts. The chronic treatment of MAP6 KO mice with Epo D strongly increased Mn(2+) propagation within both mono- and polysynaptic connections. Our results clearly indicate an in vivo deficit in neuronal Mn(2+) transport in KO MAP6 mice, which might be due to both axonal transport defects and synaptic transmission impairments. Epo D treatment alleviated the axonal transport defects, and this improvement most likely contributes to the positive effect of Epo D on behavioral defects in KO MAP6 mice.


Assuntos
Epotilonas/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Manganês/farmacocinética , Proteínas Associadas aos Microtúbulos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Meios de Contraste , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Córtex Somatossensorial/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento , Moduladores de Tubulina/uso terapêutico
20.
Schizophr Bull ; 39(5): 969-78, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23002183

RESUMO

BACKGROUND: STOP/MAP6 null (KO) mice recapitulate behavioral abnormalities related to positive and negative symptoms and cognitive deficits of schizophrenia. Here, we investigated whether decreased expression of STOP/MAP6 proteins in heterozygous mice (only one allele expressed) would result in abnormal behavior related to those displayed by STOP null mice. METHODS: Using a comprehensive test battery, we investigated the behavioral phenotype of STOP heterozygous (Het) mice compared with STOP KO and wild type (WT) mice on animals raised either in standard conditions (controls) or submitted to maternal deprivation. RESULTS: Control Het mice displayed prominent deficits in social interaction and learning, resembling KO mice. In contrast, they exhibited short-lasting locomotor hyperreactivity to acute mild stress and no impaired locomotor response to amphetamine, much like WT mice. Additionally, perinatal stress deteriorated Het mouse phenotype by exacerbating alterations related to positive symptoms such as their locomotor reactivity to acute mild stress and psychostimulant challenge. CONCLUSION: Results show that the dosage of susceptibility genes modulates their putative phenotypic contribution and that STOP expression has a high penetrance on cognitive abilities. Hence, STOP Het mice might be useful to investigate cognitive defects related to those observed in mental diseases and ultimately might be a valuable experimental model to evaluate preventive treatments.


Assuntos
Comportamento Animal/fisiologia , Transtornos Cognitivos/etiologia , Interação Gene-Ambiente , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Esquizofrenia/etiologia , Animais , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Heterozigoto , Locomoção/efeitos dos fármacos , Locomoção/genética , Locomoção/fisiologia , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/biossíntese , Fenótipo , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...