Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(20): 7257-62, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19438280

RESUMO

Experimental investigation of the phase diagram of the system carbon dioxide-water at pressures up to 2.7 GPa has been carried out in order to explain earlier controversial results on the decomposition curves of the hydrates formed in this system. According to X-ray diffraction data, solid and/or liquid phases of water and CO2 coexist in the system at room temperature within the pressure range from 0.8 to 2.6 GPa; no clathrate hydrates are observed. The results of neutron diffraction experiments involving the samples with different CO2/H2O molar ratios, and the data on the phase diagram of the system carbon dioxide-water show that CO2 hydrate of cubic structure I is the only clathrate phase present in this system under studied P-T conditions. We suppose that in the cubic structure I hydrate of CO2 multiple occupation of the large hydrate cavities with CO2 molecules takes place. At pressure of about 0.8 GPa this hydrate decomposes into components indicating the presence of the upper pressure boundary of the existence of clathrate hydrates in the system.

2.
J Phys Chem B ; 112(30): 8851-4, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18593144

RESUMO

A series of extended reversible phase transitions at approximately 0.1, 1.5, 2.0, and approximately 5 GPa was observed for the first time in the crystals of dl-cysteine by Raman spectroscopy. These are the first examples of the phase transitions induced by increasing pressure in the racemic crystal of an amino acid. In the crystals of the orthorhombic l-cysteine, a sequence of reversible structural changes in the pressure range between 1.1 and 3 GPa could be observed by Raman spectroscopy, instead of a single sharp phase transition at 1.9 GPa reported previously in ( Moggach, et al. Acta Crystallogr. 2006, B62, 296- 309 ). The role of the movements of the side -CH 2SH groups and of the changes in the hydrogen-bonding type in dl- and l-cysteine during the phase transitions with increasing pressure is discussed and compared with that on cooling down to 3 K.


Assuntos
Cisteína/química , Transição de Fase , Cristalização , Movimento (Física) , Pressão , Sensibilidade e Especificidade , Análise Espectral Raman
3.
J Phys Chem B ; 110(43): 21788-92, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064141

RESUMO

Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA