Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 111(2): 402-415, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36063500

RESUMO

Designing a biomaterial with excellent bioactivity, biocompatibility, mechanical strength, porosity, and osteogenic properties is essential to incorporate therapeutic agents in order to promote efficient bone regeneration. The work intended to prepare bioactive glass with tailor-made equal Ca/P (CP) ratio to obtain clinophosinaite (Cpt) as dominant phase. Clinophosinaite (Na3 CaPSiO7 ) is one of the rarest phases of bioactive glass (BG), which is supposed to play key role in bioactivity. The novelty of this work is to track the required sintering temperature to attain equimolar calcium phosphate-containing clinophosinaite phase and its behavior. Further, its consequent physicochemical and biological properties were analyzed. Phase transition from Rhenanite to Cpt, and later the Cpt emerged as dominant phase with increase of calcination temperature from 700 to 1000°C was studied. The quantifying evolution of Cpt with Rhenanite over increasing annealing temperature also results with the major morphological modifications. BET analysis confirmed the surface area and porosity (Type-IV mesoporous) were gradually elevated upto 900°C, which had contrary effect on mechanical strength. Formation of hydroxyl carbonate apatite (HCA) layer confirmed the bioactivity of the prepared samples at varying time intervals. The CP samples demonstrated better hemocompatibility in post-immersion (i.e., less than 1% of lysis) when compared with pre-immersion. Enhanced protein adsorption and cumulative release (85%) of Simvastatin (SIM) drug was attained at 900°C treatment.


Assuntos
Regeneração Óssea , Vidro , Vidro/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Porosidade , Sistemas de Liberação de Medicamentos
2.
Biotechnol Lett ; 44(11): 1243-1261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36242675

RESUMO

Wound healing research has revealed a plethora of data regarding various techniques for treating diverse types of wounds. It is well known that chronic wounds heal slowly and are vulnerable to infection. Also, there are numerous factors like destitute blood passage, undetermined inflammation, angiogenesis, neuropathy, and cell multiplication which overhang chronic wound healing. To eliminate the speculative features of chronic wounds, we made a consecutive survey on specific categories of biomaterials like bioglass, bioactive glass, bioceramics, biopolymers, and biocompatible metal oxide nanoparticles. In particular, the bioglass or bioactive glass which is a silica matrix composed of sodium, calcium, phosphorous, etc., is used for bone-bonding ability and easily dissolved in vivo conditions to repair damaged and wounded tissues with their peculiar physiochemical (surface area, porous nature, structural formation, mechanical stability) and biological properties (biocompatible, cytocompatible, osteoinductive, angiogenesis, hemostatic, antibacterial, and anti-inflammation). Furthermore, based on the existing literature studies, we summarized the healing of diabetes wound tendency by bioactive composite materials and offer detailed information on the method, techniques, and future technologies for wound healing.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Cicatrização , Nanocompostos/uso terapêutico , Nanocompostos/química , Vidro/química , Materiais Biocompatíveis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...