Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 2(3): e0000208, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36976789

RESUMO

One of the promising opportunities of digital health is its potential to lead to more holistic understandings of diseases by interacting with the daily life of patients and through the collection of large amounts of real-world data. Validating and benchmarking indicators of disease severity in the home setting is difficult, however, given the large number of confounders present in the real world and the challenges in collecting ground truth data in the home. Here we leverage two datasets collected from patients with Parkinson's disease, which couples continuous wrist-worn accelerometer data with frequent symptom reports in the home setting, to develop digital biomarkers of symptom severity. Using these data, we performed a public benchmarking challenge in which participants were asked to build measures of severity across 3 symptoms (on/off medication, dyskinesia, and tremor). 42 teams participated and performance was improved over baseline models for each subchallenge. Additional ensemble modeling across submissions further improved performance, and the top models validated in a subset of patients whose symptoms were observed and rated by trained clinicians.

2.
Big Data ; 11(3): 181-198, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34978896

RESUMO

The use of machine learning (ML) allows us to automate and scale the decision-making processes. The key to this automation is the development of ML models that generalize training data toward unseen data. Such models can become extremely versatile and powerful, which makes democratization of artificial intelligence (AI) possible, that is, providing ML to non-ML experts such as software engineers or domain experts. Typically, automated ML (AutoML) is being referred to as a key step toward it. However, from our perspective, we believe that democratization of the verification process of ML systems is a larger and even more crucial challenge to achieve the democratization of AI. Currently, the process of ensuring that an ML model works as intended is unstructured. It is largely based on experience and domain knowledge that cannot be automated. The current approaches such as cross-validation or explainable AI are not enough to overcome the real challenges and are discussed extensively in this article. Arguing toward structured verification approaches, we discuss a set of guidelines to verify models, code, and data in each step of the ML lifecycle. These guidelines can help to reliably measure and select an optimal solution, besides minimizing the risk of bugs and undesired behavior in edge-cases.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Automação , Projetos de Pesquisa , Software
3.
Sci Rep ; 10(1): 5860, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246097

RESUMO

Patients with advanced Parkinson's disease regularly experience unstable motor states. Objective and reliable monitoring of these fluctuations is an unmet need. We used deep learning to classify motion data from a single wrist-worn IMU sensor recording in unscripted environments. For validation purposes, patients were accompanied by a movement disorder expert, and their motor state was passively evaluated every minute. We acquired a dataset of 8,661 minutes of IMU data from 30 patients, with annotations about the motor state (OFF,ON, DYSKINETIC) based on MDS-UPDRS global bradykinesia item and the AIMS upper limb dyskinesia item. Using a 1-minute window size as an input for a convolutional neural network trained on data from a subset of patients, we achieved a three-class balanced accuracy of 0.654 on data from previously unseen subjects. This corresponds to detecting the OFF, ON, or DYSKINETIC motor state at a sensitivity/specificity of 0.64/0.89, 0.67/0.67 and 0.64/0.89, respectively. On average, the model outputs were highly correlated with the annotation on a per subject scale (r = 0.83/0.84; p < 0.0001), and sustained so for the highly resolved time windows of 1 minute (r = 0.64/0.70; p < 0.0001). Thus, we demonstrate the feasibility of long-term motor-state detection in a free-living setting with deep learning using motion data from a single IMU.


Assuntos
Movimento/fisiologia , Redes Neurais de Computação , Doença de Parkinson/diagnóstico , Idoso , Aprendizado Profundo , Discinesias/diagnóstico , Discinesias/fisiopatologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Doença de Parkinson/fisiopatologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...