Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nutrition ; 124: 112446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703635

RESUMO

OBJECTIVE: The human gut microbiota is composed of many viruses, bacteria, and fungi. Escherichia coli representatives are facultative anaerobic bacteria in the colon that play a crucial role in the metabolism of lactose, vitamin synthesis, and immune system modulation. E. coli forms a biofilm on the epithelial cell surface of the intestine that can be modified by diet compounds, i.e., gluten, xylitol, lactose, and probiotics. METHODS: In the present study, the impact of probiotic-derived Lactobacillus rhamnosus GG strain on non-pathogenic E. coli biofilm was examined. The mono- and multispecies biofilm was also treated with gluten, xylitol, and lactose. We used 96-well plates to obtain biofilm growth. Biofilm was stained using crystal violet. To evaluate the type of interaction in mono- and multispecies biofilm, a new formula was introduced: biofilm interaction ratio index (BIRI). To describe the impact of nutrients on biofilm formation, the biofilm formation impact ratio (BFIR) was calculated. RESULTS: The biofilms formed by both examined species are stronger than in monocultures. All the BIRI values were above 3.0. It was found that the monospecies biofilm of L. rhamnosus is strongly inhibited by gluten (84.5%) and the monospecies biofilm of E. coli by xylitol (85.5%). The mixed biofilm is inhibited by lactose (78.8%) and gluten (90.6%). CONCLUSION: The relations between bacteria in the mixed biofilm led to changes in biofilm formation by E. coli and L. rhamnosus GG. Probiotics might be helpful in rebuilding the gut microbiota after broad spectrum antibiotic therapy, but only if gluten and lactose are excluded from diet.


Assuntos
Biofilmes , Escherichia coli , Microbioma Gastrointestinal , Glutens , Lacticaseibacillus rhamnosus , Lactose , Probióticos , Xilitol , Biofilmes/efeitos dos fármacos , Xilitol/farmacologia , Humanos , Lacticaseibacillus rhamnosus/fisiologia , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Probióticos/farmacologia
2.
Nutrients ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794658

RESUMO

One of the most important bioactive components of breast milk are free breast milk oligosaccharides, which are a source of energy for commensal intestinal microorganisms, stimulating the growth of Bifidobacterium, Lactobacillus, and Bacteroides in a child's digestive tract. There is some evidence that maternal, perinatal, and environmental-cultural factors influence the modulation of the breast milk microbiome. This review summarizes research that has examined the composition of the breast milk microbiome and the factors that may influence it. The manuscript highlights the potential importance of the breast milk microbiome for the future development and health of children. The origin of bacteria in breast milk is thought to include the mother's digestive tract (entero-mammary tract), bacterial exposure to the breast during breastfeeding, and the retrograde flow of breast milk from the infant's mouth to the woman's milk ducts. Unfortunately, despite increasingly more precise methods for assessing microorganisms in human milk, the topic of the human milk microbiome is still quite limited and requires scientific research that takes into account various conditions.


Assuntos
Aleitamento Materno , Microbiota , Leite Humano , Leite Humano/microbiologia , Leite Humano/química , Humanos , Feminino , Lactente , Recém-Nascido , Microbioma Gastrointestinal/fisiologia
3.
BMC Microbiol ; 23(1): 259, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716959

RESUMO

BACKGROUND: Listeria monocytogenes are Gram-positive rods, widespread in the environment due to their wide tolerance to changing conditions. The apilot study aimed to assess the impact of six various stresses (heat, cold, osmotic, acid, alkali, frozen) on phenotypic features: MIC of antibiotics (penicillin, ampicillin, meropenem, erythromycin, co-trimoxazole; gradient stripes), motility, ability to form a biofilm (crystal violet method) and growth rate (OD and quantitative method), expression level of sigB (stress induced regulator of genes), agrA, agrB (associated with biofilm formation) and lmo2230, lmo0596 (acid and alkali stress) (qPCR) for three strains of L. monocytogenes. RESULTS: Applied stress conditions contributed to changes in phenotypic features and expression levels of sigB, agrA, agrB, lmo2230 and lmo0596. Stress exposure increased MIC value for penicillin (ATCC 19111 - alkaline stress), ampicillin (472CC - osmotic, acid, alkaline stress), meropenem (strains: 55 C - acid, alkaline, o smotic, frozen stress; 472CC - acid, alkaline stress), erythromycin (strains: 55 C - acid stress; 472CC - acid, alkaline, osmotic stress; ATCC 19111 - osmotic, acid, alkaline, frozen stress), co-trimoxazole (strains: 55 C - acid stress; ATCC 19111 - osmotic, acid, alkaline stress). These changes, however, did not affect antibiotic susceptibility. The strain 472CC (a moderate biofilm former) increased biofilm production after exposure to all stress factors except heat and acid. The ATCC 19111 (a weak producer) formed moderate biofilm under all studied conditions except cold and frozen stress, respectively. The strain 55 C became a strong biofilm producer after exposure to cold and produced a weak biofilm in response to frozen stress. Three tested strains had lower growth rate (compared to the no stress variant) after exposure to heat stress. It has been found that the sigB transcript level increased under alkaline (472CC) stress and the agrB expression increased under cold, osmotic (55 C, 472CC), alkali and frozen (472CC) stress. In contrast, sigB transcript level decreased in response to acid and frozen stress (55 C), lmo2230 transcript level after exposure to acid and alkali stress (ATCC 19111), and lmo0596 transcript level after exposure to acid stress (ATCC 19111). CONCLUSIONS: Environmental stress changes the ability to form a biofilm and the MIC values of antibiotics and affect the level of expression of selected genes, which may increase the survival and virulence of L. monocytogenes. Further research on a large L. monocytogenes population is needed to assess the molecular mechanism responsible for the correlation of antibiotic resistance, biofilm formation and resistance to stress factors.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Projetos Piloto , Meropeném , Combinação Trimetoprima e Sulfametoxazol , Antibacterianos/farmacologia , Ampicilina/farmacologia , Álcalis , Eritromicina
4.
Antibiotics (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237783

RESUMO

Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are ß-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.

6.
Diagnostics (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980344

RESUMO

Healthcare-associated infections caused by multidrug-resistant Acinetobacter baumannii strains are a serious global threat. Therefore, it is important to expand the knowledge on the mechanisms of pathogenicity of these particular bacteria. The aim of this study was to assess the distribution of selected virulence factor genes (bap, surA1, omp33-36, bauA, bauS, and pld) among carbapenem-non-susceptible clinical A. baumannii isolates and to evaluate their potential usefulness as genetic markers for rapid diagnostics of A. baumannii infections. Moreover, we aimed to compare the virulence genes prevalence with the occurrence of carbapenemases genes. A total of 100 carbapenem-non-susceptible A. baumannii clinical isolates were included in the study. The presence of virulence factors and blaOXA genes was evaluated by real-time PCR. The occurrence of virulence factors genes was as follows: 100.0% for the bap and surA1 genes, 99.0% for the basD and pld genes. The bauA and omp33-36 genes were absent among the studied strains. The predominant genes (bap and surA1) are involved in biofilm formation and their presence among all clinical strains can be applied as a genetic marker to recognize A. baumannii infection. High frequencies of the basD gene-involved in siderophore biosynthesis and the gene encoding phospholipase D (pld)-were also noted among blaOXA-positive strains, showing their potential role in a pathogenicity of blaOXA-positive A. baumannii clinical strains.

7.
Diagnostics (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766581

RESUMO

Epstein-Barr virus (EBV) is an oncogenic virus classified by the World Health Organization as a class 1 carcinogen. Post-transplant lymphoproliferative disorders are believed to be strongly related to an EBV infection. Monitoring of EBV DNAemia is recommended to assess the risk of reactivation of latent infection and to assess the effectiveness of therapy. Currently, various types of clinical specimens are used for this purpose. The aim of the study was to assess a reliable method of EBV viral load investigation depending on the clinical material used: whole blood or plasma samples. We found that of 134 EBV-DNA-positive whole-blood samples derived from 51 patients (mostly hemato-oncology or post-transplantation), only 43 (32.1%) were plasma-positive. Of these, 37 (86.0%) had lower plasma DNAemia compared to the corresponding whole-blood samples. We conclude that whole-blood samples have a higher sensitivity than plasma samples in EBV DNA detection. The clinical utility of the tests is unclear, but our results suggest that either whole blood or plasma should be used consistently for EBV viral load monitoring.

8.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674786

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen encoding several virulence factors in its genome, which is well-known for its ability to cause severe and life-threatening infections, particularly among cystic fibrosis patients. The organism is also a major cause of nosocomial infections, mainly affecting patients with immune deficiencies and burn wounds, ventilator-assisted patients, and patients affected by other malignancies. The extensively reported emergence of multidrug-resistant (MDR) P. aeruginosa strains poses additional challenges to the management of infections. The aim of this study was to compare the incidence rates of selected virulence-factor-encoding genes and the genotype distribution amongst clinical multidrug-sensitive (MDS) and MDR P. aeruginosa strains. The study involved 74 MDS and 57 MDR P. aeruginosa strains and the following virulence-factor-encoding genes: lasB, plC H, plC N, exoU, nan1, pilA, and pilB. The genotype distribution, with respect to the antimicrobial susceptibility profiles of the strains, was also analyzed. The lasB and plC N genes were present amongst several P. aeruginosa strains, including all the MDR P. aeruginosa, suggesting that their presence might be used as a marker for diagnostic purposes. A wide variety of genotype distributions were observed among the investigated isolates, with the MDS and MDR strains exhibiting, respectively, 18 and 9 distinct profiles. A higher prevalence of genes determining the virulence factors in the MDR strains was observed in this study, but more research is needed on the prevalence and expression levels of these genes in additional MDR strains.


Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Pseudomonas aeruginosa , Virulência/genética , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológico , Genótipo , Testes de Sensibilidade Microbiana
9.
BMC Microbiol ; 23(1): 27, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36690941

RESUMO

BACKGROUND: Listeria monocytogenes are Gram-positive rods, which are the etiological factor of listeriosis. L. monocytogenes quickly adapts to changing environmental conditions. Since the main source of rods is food, its elimination from the production line is a priority. The study aimed to evaluate the influence of selected stress factors on the growth and survival of L. monocytogenes strains isolated from food products and clinical material. RESULTS: We distinguished fifty genetically different strains of L. monocytogenes (PFGE method). Sixty-two percent of the tested strains represented 1/2a-3a serogroup. Sixty percent of the rods possessed ten examined virulence genes (fbpA, plcA, hlyA, plcB, inlB, actA, iap, inlA, mpl, prfA). Listeria Pathogenicity Island 1 (LIPI-1) was demonstrated among 38 (76.0%) strains. Majority (92.0%) of strains (46) were sensitive to all examined antibiotics. The most effective concentration of bacteriophage (inhibiting the growth of 22 strains; 44.0%) was 5 × 108 PFU. In turn, the concentration of 8% of NaCl was enough to inhibit the growth of 31 strains (62.0%). The clinical strain tolerated the broadest pH range (3 to 10). Five strains survived the 60-min exposure to 70˚C, whereas all were alive at each time stage of the cold stress experiment. During the stress of cyclic freezing-defrosting, an increase in the number of bacteria was shown after the first cycle, and a decrease was only observed after cycle 3. The least sensitive to low nutrients content were strains isolated from frozen food. The high BHI concentration promoted the growth of all groups. CONCLUSIONS: Data on survival in stress conditions can form the basis for one of the hypotheses explaining the formation of persistent strains. Such studies are also helpful for planning appropriate hygiene strategies within the food industry.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Microbiologia de Alimentos , Listeriose/microbiologia , Virulência/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética
10.
Mycopathologia ; 188(1-2): 135-141, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36581774

RESUMO

BACKGROUND: Candida auris is an emerging pathogen that constitutes a serious global health threat. It is difficult to identify without specific approaches, and it can be misidentified with standard laboratory methods, what may lead to inappropriate management. CASE PRESENTATION: We report, probably the first in Poland, C. auris isolation from blood cultures and wound swabs of a young male following meningococcal septicaemia, in February 2019. The patient had been previously hospitalized in the United Arab Emirates. The isolate was rapidly identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry and therefore clinicians were promptly informed on the alert pathogen isolation. The targeted antifungal treatment was successful and infection control measures seemed effective. ITS-based identification and subsequent whole genome sequencing showed that the C. auris isolate belongs to South Asian lineage (clade I). CONCLUSIONS: C. auris is able to cause outbreaks in healthcare settings. Therefore, it is important to quickly identify C. auris isolates in hospital settings so that healthcare facilities can take proper precautions to limit its spread.


Assuntos
Candida , Candidíase Invasiva , Masculino , Humanos , Polônia/epidemiologia , Testes de Sensibilidade Microbiana
11.
Antibiotics (Basel) ; 11(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36551406

RESUMO

Urinary Tract Infections (UTIs) are common outpatient and inpatient infections, often treated with empirical therapy. Enterococcus spp. is responsible for about 10% of UTIs. This study aimed to determine the necessity of changing the empirical treatment of UTIs caused by Enterococcus spp. The evaluation was performed for 542 Enterococcus strains isolated from urine samples in the years 2016-2021. We identified three Enterococcus species that were found: E. faecalis (389, 71.8%), E. faecium (151, 27.8%) and E. gallinarum (2, 0.4%). E. faecalis was the dominant species every year. Among E. faecalis, the most prevalent was resistance to norfloxacin (51.4%). Almost all E. faecium strains (150, 99.3%) were resistant to beta-lactams and norfloxacin. Eighty-three strains (55.0%) were resistant to vancomycin and 72 (47.7%) to teicoplanin. E. faecium strains showed a significantly higher percentage of resistance mechanisms GRE (Glicopeptide-Resistant Enterococcus) (72, 48.7%) and VRE (Vancomycin-Resistant Enterococcus) (11, 7.3%), while only five strains of E. feacalis showed a VRE mechanism (1.3%). In the therapy of E. faecalis UTIs, ampicillin and imipenem still remain effective. However, the above-mentioned antibiotics, as well as fluoroquinolones, are not recommended in the treatment of UTIs of E. faecium etiology.

12.
Pathogens ; 11(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36558749

RESUMO

The aim of this study was to evaluate the usefulness of the Accelerate Pheno™ system (APS) (Accelerate Diagnostics, Denver, CO, USA) for rapid laboratory diagnosis of bloodstream infections. The study included 45 positive blood samples obtained from patients hospitalized in University Hospital No. 1 in Bydgoszcz, Poland. In 40 (88.9%) blood samples, the APS was capable of identification of at least one microorganism at the genus or species level and in 38 (84.4%) of them additionally assessed antimicrobial susceptibility. The time of identification and the time to result of antimicrobial susceptibility ranged from 1:32 to 1:42 and 5:02 to 5:36 h, respectively. Six positive blood samples revealed a poly-microbial culture. In these cases, only one out of two or three microorganisms was detected by the APS, and the system assessed antimicrobial susceptibility only for them. For 78.6% positive blood samples, agreement on identification compared to mass spectrometry was found. For all but one sample, a 96-100% compliance of the resistance category was achieved when comparing the antimicrobial susceptibility testing results to conventional methods. Using the APS, the total time to report was reduced from 13:34 to even 63:47 h compared to the standard microbiological laboratory workflow. The APS is a very useful system, especially for the rapid assessment of antimicrobial susceptibility of bacteria directly from positive blood samples, offering the greatest potential for microbiology laboratories operating around the clock.

13.
Pathogens ; 11(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558842

RESUMO

Cefiderocol (CFDC) is a novel, broad-spectrum siderophore cephalosporin with potential activity against multi-drug (MDR) and extensively drug-resistant (XDR) Enterobacterales, including carbapenem-resistant strains. We assessed the in vitro susceptibility to CFDC of MDR, and XDR E. coli isolates derived from clinical samples of hospitalized patients. Disk diffusion (DD) and MIC (minimum inhibitory concentration) test strip (MTS) methods were used. The results were interpreted based on EUCAST (version 12.0 2022) recommendations. Among all E. coli isolates, 98 (94.2%) and 99 (95.2%) were susceptible to CFDC when the DD and MTS methods were used, respectively (MIC range: <0.016−4 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL). With the DD and MTS methods, all (MIC range: 0.016−2 µg/mL, MIC50: 0.19 µg/mL, MIC90: 0.75 µg/mL) but three (96.6%) ESBL-positive isolates were susceptible to CFDC. Out of all the metallo-beta-lactamase-positive E. coli isolates (MIC range: 0.016−4 µg/mL, MIC50: 0.5 µg/mL, MIC90: 1.5 µg/mL), 16.7% were resistant to CFDC with the DD method, while 11.1% were resistant to CFDC when the MTS method was used. CFDC is a novel therapeutic option against MDR and XDR E. coli isolates and is promising in the treatment of carbapenem-resistant E. coli strains, also for those carrying Verona integron-encoded metallo-beta-lactamases, when new beta-lactam-beta-lactamase inhibitors cannot be used.

14.
Pathogens ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422636

RESUMO

Viral infections, or their reactivations, are one of the most important groups of transplantation complications that can occur among recipients of both hematopoietic cells and solid organ transplants. They are the most commonly caused by cytomegalovirus (CMV). Currently, the use of whole blood or plasma samples is recommended for CMV viral load monitoring. The aim of the study was to assess and compare the level of CMV DNA, depending on the type of clinical material­whole blood or plasma fraction derived from the same patient. The studies were carried out on 156 whole blood samples in which the presence of CMV genetic material was confirmed and the corresponding plasma samples from the same rounds of sampling. CMV DNA was not present in 59 (37.8%) of plasma samples compared to whole blood-positive counterparts. Of the samples positive in both types of clinical specimen, 77 (79.4%) had higher viral DNA levels in the whole blood samples. There were statistically significant differences in the detected CMV DNA load in the whole blood compared to plasma fraction counterparts (p < 0.001). The detected CMV DNA value is usually higher in whole blood compared to plasma samples of the same patient. Due to the variability in CMV viral load depending on the clinical material used for a particular patient, one type of specimen should be always used consequently for CMV viremia monitoring.

15.
Pathogens ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145409

RESUMO

Lactic acid bacteria belonging to Lactobacillus spp. and Lacticaseibacillus spp. are a natural part of fermented milk and other food products, probiotic supplements and human microbiota. They mainly belong to mucosal microflora, especially oral, vaginal and intestinal. Lacticaseibacillus spp. strains included in probiotics are generally characterised as safe microorganisms, and the species are concerned bacteria with very low pathogenic potential. However, infections caused by Lactobacillus spp. and Lacticaseibacillus spp., including bacteraemia and endocarditis, occur occasionally. The aim of the study was to present two cases of bacteraemia due to Lacticaseibacillus rhamnosus associated with the use of a probiotic product. It afflicted patients in intensive care units. The investigation was preliminarily based on clinical and microbiological recognition of the cases. The initial observation was laboratory confirmed with the application of pulsed-field gel electrophoresis (PFGE) results. Identical PFGE patterns were obtained for the evaluated strains and the strains derived from a commercially available probiotic that was administered to those patients. The increasing number of studies describing opportunistic infections due to probiotic strains of Lacticaseibacillus spp. should result in verifying the safety of probiotic formulations used in immunocompromised patients and forming detailed guidelines for the use of probiotics among patients from several risk groups.

16.
New Microbiol ; 45(3): 190-192, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35920873

RESUMO

Enterobacterales as opportunistic pathogens are commonly associated with nosocomial infections. With increasing frequency, Gram-negative bacilli, especially Klebsiella pneumoniae strains, are mul- tidrug-resistant or pandrug-resistant. Carbapenems were used as the drugs of choice for the treat- ment of infections caused by multidrug-resistant Gram-negative bacilli. The aim of this study was to assess the usefulness of the RESIST-4 O.K.N.V. K-SeT for the rapid detection and identification of the most important carbapenemases (OXA-48, KPC, NDM, VIM) in Enterobacterales bacilli. The study involved the isolates of 97 Enterobacterales strains. The ability to produce carbapenemases was determined by the immunochromatographic RESIST-4 O.K.N.V. K-SeT test. This test detected carbapenemases OXA-48, KPC, NDM, and VIM. For the RESIST-4 O.K.N.V. K-SeT test, a positive result was obtained for 93 strains (95.9%). Four strains negative in the RESIST-4 O.K.N.V. K-SeT were positive in the Eazyplex®SuperBugCRE and PCR. These strains produce VIM enzymes. RE- SIST-4 O.K.N.V. K-SeT test is rapid, simple to perform and can be used for fast detection of the most important carbapenemases (OXA-48, KPC, NDM, VIM) among Gram-negative bacilli.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/genética , Humanos , Klebsiella pneumoniae , beta-Lactamases/genética
17.
Antioxidants (Basel) ; 11(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading worldwide. For this reason, new treatment methods are constantly being researched. Consequently, new and already-known preparations are being investigated to potentially reduce the severe course of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection induces the production of pro-inflammatory cytokines and acute serum biomarkers in the host organism. In addition to antiviral drugs, there are other substances being used in the treatment of COVID-19, e.g., those with antioxidant properties, such as vitamin C (VC). Exciting aspects of the use of VC in antiviral therapy are its antioxidant and pro-oxidative abilities. In this review, we summarized both the positive effects of using VC in treating infections caused by SARS-CoV-2 in the light of the available research. We have tried to answer the question as to whether the use of high doses of VC brings the expected benefits in the treatment of COVID-19 and whether such treatment is the correct therapeutic choice. Each case requires individual assessment to determine whether the positives outweigh the negatives, especially in the light of populational studies concerning the genetic differentiation of genes encoding the solute carriers responsible forVC adsorption. Few data are available on the influence of VC on the course of SARS-CoV-2 infection. Deducing from already-published data, high-dose intravenous vitamin C (HDIVC) does not significantly lower the mortality or length of hospitalization. However, some data prove, among other things, its impact on the serum levels of inflammatory markers. Finally, the non-positive effect of VC administration is mainly neutral, but the negative effect is that it can result in urinary stones or nephropathies.

18.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887166

RESUMO

Stress and anxiety are common phenomena that contribute to many nervous system dysfunctions. More and more research has been focusing on the importance of the gut-brain axis in the course and treatment of many diseases, including nervous system disorders. This review aims to present current knowledge on the influence of psychobiotics on the gut-brain axis based on selected diseases, i.e., Alzheimer's disease, Parkinson's disease, depression, and autism spectrum disorders. Analyses of the available research results have shown that selected probiotic bacteria affect the gut-brain axis in healthy people and people with selected diseases. Furthermore, supplementation with probiotic bacteria can decrease depressive symptoms. There is no doubt that proper supplementation improves the well-being of patients. Therefore, it can be concluded that the intestinal microbiota play a relevant role in disorders of the nervous system. The microbiota-gut-brain axis may represent a new target in the prevention and treatment of neuropsychiatric disorders. However, this topic needs more research. Such research could help find effective treatments via the modulation of the intestinal microbiome.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Nervoso , Doença de Parkinson , Probióticos , Bactérias , Encéfalo , Microbioma Gastrointestinal/fisiologia , Humanos , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/terapia , Doença de Parkinson/terapia , Probióticos/uso terapêutico
19.
Ann Clin Microbiol Antimicrob ; 21(1): 22, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655208

RESUMO

BACKGROUND: Fluoroquinolones are a group of antibiotics used in urinary tract infections. Unfortunately, resistance to this group of drugs is currently growing. The combined action of fluoroquinolones and other antibacterial and anti-biofilm substances may extend the use of this therapeutic option by clinicians. The aim of the study was to determine the effect of selected fluoroquinolones and therapeutic concentrations of ascorbic acid and rutoside on biofilm formation by Proteus mirabilis. MATERIALS AND METHODS: The study included 15 strains of P. mirabilis isolated from urinary tract infections in patients of the University Hospital No. 1 dr A. Jurasz in Bydgoszcz (Poland). The metabolic activity of the biofilm treated with 0.4 mg/ml ascorbic acid, 0.02 µg/ml rutoside and chemotherapeutic agents (ciprofloxacin, norfloxacin) in the concentration range of 0.125-4.0 MIC (minimum inhibitory concentration) was assessed spectrophotometrically. RESULTS: Both ciprofloxacin and norfloxacin inhibited biofilm formation by the tested strains. The biofilm reduction rate was correlated with the increasing concentration of antibiotic used. No synergism in fluoroquinolones with ascorbic acid, rutoside or both was found. The ascorbic acid and rutoside combination, however, significantly decreased biofilm production. CONCLUSIONS: Our research proves a beneficial impact of ascorbic acid with rutoside supplementation on biofilm of P. mirabilis strains causing urinary tract infections.


Assuntos
Fluoroquinolonas , Proteus mirabilis , Antibacterianos/farmacologia , Ácido Ascórbico/farmacologia , Biofilmes , Ciprofloxacina/farmacologia , Fluoroquinolonas/farmacologia , Humanos , Norfloxacino , Rutina
20.
Foods ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627065

RESUMO

(1) Background: The main source of transmission of Listeria monocytogenes is contaminated food, e.g., fish and meat products and raw fruit and vegetables. The bacteria can remain for 13 years on machines in food processing plants, including fish plants. (2) Methods: A total of 720 swabs were collected from a salmon filleting line. The research material consisted of 62 (8.6%) L. monocytogenes isolates. Pulsed Field Gel Electrophoresis (PFGE) allowed detecting a pool of persistent strains. All persistent strains (n = 6) and a parallel group of strains collected sporadically (n = 6) were characterized by their ability to invade HT-29 cells, biofilm formation ability, and minimum bactericidal concentrations (MBC) of selected disinfectants. (3) Results: Among the obtained isolates, 38 genetically different strains were found, including 6 (15.8%) persistent strains. The serogroup 1/2a-3a represented 28 strains (73.7%), including the persistent ones. There were no significant differences in invasiveness between the persistent and sporadic strains. The persistent strains tolerated higher concentrations of the tested disinfectants, except for iodine-based compounds. The persistent strains initiated the biofilm formation process faster and formed it more intensively. (4) Conclusions: The presence of persistent strains in the food processing environment is a great challenge for producers to ensure consumer safety. This study attempts to elucidate the phenotypic characteristics of persistent L. monocytogenes strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...