Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Stress ; 23: 100532, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942087

RESUMO

Hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) mediate glucocorticoid hormone (GC) action in the hippocampus. These receptors bind to glucocorticoid responsive elements (GREs) within target genes, eliciting transcriptional effects in response to stress and circadian variation. Until recently, little was known about the genome-wide targets of hippocampal MRs and GRs under physiological conditions. Following on from our genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus, we investigated the Krüppel-like factors (KLFs) as targets of MRs and GRs throughout the brain under circadian variation and after acute stress. In particular, Klf2, Klf9 and Klf15 are known to be stress and/or GC responsive and play a role in neurobiological processes including synaptic plasticity and neuronal differentiation. We found increased binding of MR and GR to GREs within Klf2, Klf9 and Klf15 in the hippocampus, amygdala, prefrontal cortex, and neocortex after acute stress and resulting from circadian variation, which was accompanied by upregulation of corresponding hnRNA and mRNA levels. Adrenalectomy abolished transcriptional upregulation of specific Klf genes. These results show that MRs and GRs regulate Klf gene expression throughout the brain following exposure to acute stress or in response to circadian variation, likely alongside other transcription factors.

2.
Nat Commun ; 12(1): 4737, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362910

RESUMO

Glucocorticoid hormones (GCs) - acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) - are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Receptores de Esteroides/metabolismo , Animais , Regulação da Expressão Gênica , Genoma , Hipocampo/patologia , Humanos , Masculino , Ligação Proteica , RNA/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Fatores de Transcrição
3.
Mol Psychiatry ; 26(7): 3060-3076, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33649453

RESUMO

Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.


Assuntos
Sistema Hipotálamo-Hipofisário , Núcleo Hipotalâmico Paraventricular , Estresse Fisiológico , Proteínas de Ligação a Tacrolimo , Animais , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas de Ligação a Tacrolimo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...