Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 85(6): 3309-17, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23394260

RESUMO

Rapid and efficient quality control according to the public authority regulations is mandatory to guarantee safety of the pharmaceuticals and to save resources in the pharmaceutical industry. In the case of so-called "grandfather products" like the synthetic thyroid hormone thyroxine, strict regulations enforce a detailed chemical analysis in order to characterize potentially toxic or pharmacologically relevant impurities. We report a straightforward workflow for the comprehensive impurity profiling of synthetic thyroid hormones and impurities employing ultrahigh-performance liquid chromatography (UHPLC) hyphenated to high-resolution mass spectrometry (HRMS). Five different batches of synthetic thyroxin were analyzed resulting in the detection of 71 impurities within 3 min total analysis time. Structural elucidation of the compounds was accomplished via a combination of accurate mass measurements, computer based calculations of molecular formulas, multistage high-resolution mass spectrometry (HRMS(n)), and nuclear magnetic resonance spectroscopy, which enabled the identification of 71 impurities, of which 47 have been unknown so far. Thirty of the latter were structurally elucidated, including products of deiodination, aliphatic chain oxidation, as well as dimeric compounds as new class of thyroid hormone derivatives. Limits of detection for the thyroid compounds were in the 6 ng/mL range for negative electrospray ionization mass spectrometric detection in full scan mode. Within day and day-to-day repeatabilities of retention times and peak areas were below 0.5% and 3.5% R.SD. The performance characteristics of the method in terms of robustness and information content clearly show that UHPLC-HRMS is adequate for the rapid and reliable detection, identification, and semiquantitative determination of trace levels of impurities in synthetic pharmaceuticals.


Assuntos
Contaminação de Medicamentos , Espectrometria de Massas/métodos , Tiroxina/análise , Cromatografia Líquida de Alta Pressão/métodos , Fatores de Tempo
2.
Anal Bioanal Chem ; 391(1): 279-88, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18389227

RESUMO

The transfer of a gradient method to an isocratic or multistep gradient method employing stationary phase optimized liquid chromatography facilitated a reduction in analysis time by 50% and significantly improved the mass spectrometric detectability of impurities in synthetic thyroid hormones. Four column segments packed with different stationary phases were combined into a single chromatographic column, which allowed the separation and photometric as well as mass spectrometric detection of thyroid compounds in less than 30 min under isocratic- or step gradient elution conditions with 0.10% acetic acid/acetonitrile. Signal instability and baseline drift during detection by negative electrospray ionization time-of-flight mass spectrometry were minimized by optimizing the spray parameters for each individual elution step. This resulted in improved detectabilities and higher mass spectral quality, especially for low-abundance components in the sample mixture. The method was applied to the separation and detection of the low-abundance impurities formed upon the thermal stressing of a sample of synthetic levothyroxine.


Assuntos
Química Farmacêutica , Cromatografia Líquida , Contaminação de Medicamentos , Espectrometria de Massas , Hormônios Tireóideos/química , Calibragem , Cromatografia Líquida/métodos , Contaminação de Medicamentos/prevenção & controle , Espectrometria de Massas/métodos , Controle de Qualidade , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA