Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 43(8): 1118-1128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32883168

RESUMO

Anaerobic digestion is a versatile biotechnology that produces bioenergy, biogas, from wastewater. Biogas production and wastewater treatment can be optimized by associating substrates with complementary characteristics. In this context, the aim of this study was to evaluate the performance of the anaerobic co-digestion of different contents of landfill leachate and crude glycerol compared to the organic matter removal and specific biogas production, the effects of the factors (time, glycerol content and substrate/inoculum ratio) and their interactions on kinetic parameters of specific biogas production using the modified Gompertz model. A Central Composite Rotational Design (CCRD) was performed for the experimental variables: time (16.6, 20, 25, 30 and 33.4 days), glycerol content (0.43, 0.70, 1.10, 1.50 and 1.77%) and substrate/inoculum ratio (0.23, 0.30, 0.40, 0.50 and 0.57 g COD/g VSS). From the optimization, it was possible to maximize the efficiency of organic matter removal (90.15%) and specific biogas production (403.15 mL/g VSS) in the conditions of 33.2 days, glycerol content of 1.71% and substrate/inoculum ratio of 0.37 g COD/g VSS. Concerning the modified Gompertz model of the optimal condition performed, an average of 20.3 times higher specific biogas production was obtained when compared to the monodigestion of leachate. Therefore, the association of leachate and glycerol was found to be feasible in terms of stability, biodegradability and biogas production.


Assuntos
Biocombustíveis , Glicerol , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Digestão , Metano , Águas Residuárias
2.
Environ Technol ; 41(20): 2583-2593, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30691349

RESUMO

The objective of this study was to evaluate the performance of the anaerobic co-digestion of different concentrations of industrial landfill leachate associated with crude residual glycerin, in relation to the methanogenic potential, COD removal, accumulated methane production, the effects of the factors (food/microorganism ratio and percentage of glycerin added to the leachate) and their interactions on kinetic parameters of methane production (CH4) using the modified Gompertz model. Co-digestion tests were carried out in bench scale (400 mL of useful volume) under batch mode at 30 ± 1°C during 30-day incubation of anaerobic sewage sludge as inoculum. The parameters glycerin addition to the leachate (v/v) (0%, 1.5%, 5%, 8.5% and 10%) and F/M ratio (0.3, 0.5, 1, 1.5 and 1.7) were investigated using Central Composite Rotational Design method (CCRD). The results indicated significant effect to the response variables: methanogenic potential, COD removal, accumulated production of CH4 and maximum estimated production of CH4, considering a confidence interval of 95% (p < .05). The ideal mixture of 95.13% of leachate with 4.87% of raw glycerin was obtained by desirability test to F/M of 1.61 gCOD of substrate per gVSS (volatile suspended solids) of sludge. Methanogenic potential was 0.19 LNCH4 gTVSrem -1, and the average removal of COD was 92%, resulting in accumulated production and maximum estimated production of CH4 of 74 and 80 mL, respectively. It was noted that the process of co-digestion of the industrial landfill leachate with the crude residual glycerin is promising, due to is potential of complementing and balancing organic materials, nutrients and other components that influence the biological process. Abbreviations: AN: ammoniacal nitrogen; BMP: biochemical methane potential; CCRD: central composite rotational design; COD: chemical oxygen demand; F/M ratio: food/microorganism ratio; FSS: fixed suspended solids; NTP: normal temperature and pressure; TSS: total suspended solids; TA: total alkalinity; TFS: total fixed solids; TKN: total Kjeldahl nitrogen; TP: total phosphorus; TS: total solids; TVA: total volatile acids; TVS: total volatile solids; VSS: volatile suspended solids; WWTP: wastewater treatment plant.


Assuntos
Poluentes Químicos da Água/análise , Anaerobiose , Reatores Biológicos , Glicerol , Metano , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...