Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 627(8004): 636-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418875

RESUMO

A hallmark of cancer is the avoidance of immune destruction. This process has been primarily investigated in locally advanced or metastatic cancer1-3; however, much less is known about how pre-malignant or early invasive tumours evade immune detection. Here, to understand this process in early colorectal cancers (CRCs), we investigated how naive colon cancer organoids that were engineered in vitro to harbour Apc-null, KrasG12D and Trp53-null (AKP) mutations adapted to the in vivo native colonic environment. Comprehensive transcriptomic and chromatin analyses revealed that the endoderm-specifying transcription factor SOX17 became strongly upregulated in vivo. Notably, whereas SOX17 loss did not affect AKP organoid propagation in vitro, its loss markedly reduced the ability of AKP tumours to persist in vivo. The small fraction of SOX17-null tumours that grew displayed notable interferon-γ (IFNγ)-producing effector-like CD8+ T cell infiltrates in contrast to the immune-suppressive microenvironment in wild-type counterparts. Mechanistically, in both endogenous Apc-null pre-malignant adenomas and transplanted organoid-derived AKP CRCs, SOX17 suppresses the ability of tumour cells to sense and respond to IFNγ, preventing anti-tumour T cell responses. Finally, SOX17 engages a fetal intestinal programme that drives differentiation away from LGR5+ tumour cells to produce immune-evasive LGR5- tumour cells with lower expression of major histocompatibility complex class I (MHC-I). We propose that SOX17 is a transcription factor that is engaged during the early steps of colon cancer to orchestrate an immune-evasive programme that permits CRC initiation and progression.


Assuntos
Adenoma , Neoplasias Colorretais , Evasão da Resposta Imune , Fatores de Transcrição SOXF , Animais , Humanos , Camundongos , Adenoma/imunologia , Adenoma/patologia , Linfócitos T CD8-Positivos/imunologia , Cromatina/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Interferon gama/imunologia , Organoides/imunologia , Organoides/patologia , Fatores de Transcrição SOXF/metabolismo , Microambiente Tumoral/imunologia , Mutação , Endoderma/metabolismo , Progressão da Doença
2.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712427

RESUMO

RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Caderinas/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Proteínas Ligadas por GPI/genética , Neoplasias Hepáticas/genética , Pâncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
3.
Oncogene ; 42(26): 2139-2152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198398

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. We previously reported that chromatin remodeler Brg1 is essential for acinar cell-derived PDAC formation in mice. However, the functional role of Brg1 in established PDAC and its metastasis remains unknown. Here, we investigated the importance of Brg1 for established PDAC by using a mouse model with a dual recombinase system. We discovered that Brg1 was a critical player for the cell survival and growth of spontaneously developed PDAC in mice. In addition, Brg1 was essential for metastasis of PDAC cells by inhibiting apoptosis in splenic injection and peritoneal dissemination models. Moreover, cancer stem-like property was compromised in PDAC cells by Brg1 ablation. Mechanistically, the hypoxia pathway was downregulated in Brg1-deleted mouse PDAC and BRG1-low human PDAC. Brg1 was essential for HIF-1α to bind to its target genes to augment the hypoxia pathway, which was important for PDAC cells to maintain their stem-like properties and to metastasize to the liver. Human PDAC cells with high BRG1 expression were more susceptible to BRG1 suppression. In conclusion, Brg1 plays a critical role for cell survival, stem-like property and metastasis of PDAC through the regulation of hypoxia pathway, and thus could be a novel therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Hipóxia , Neoplasias Pancreáticas/patologia , Animais , Camundongos , Neoplasias Pancreáticas
4.
Br J Cancer ; 127(10): 1876-1885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35999270

RESUMO

BACKGROUND: Tuft cells are chemosensory epithelial cells playing a role in innate immunity. Recent studies revealed cancers with a tuft cell-like gene expression signature in the thorax. We wondered whether this signature might also occur in extrathoracic cancers. METHODS: We examined mRNA expression of tuft cell markers (POU2F3, GFI1B, TRPM5, SOX9, CHAT, and AVIL) in 19 different types of cancers in multiple extrathoracic organs with The Cancer Genome Atlas (TCGA) (N = 6322). Four different extrathoracic cancers in our local archives (N = 909) were analysed by immunohistochemistry. RESULTS: Twenty-two (0.35%) extrathoracic tumours with co-expression of POU2F3 and other tuft cell markers were identified in various TCGA datasets. Twelve of the 22 "tuft cell-like tumours" shared poor differentiation and a gene expression pattern, including KIT, anti-apoptotic BCL2, and ionocyte-associated genes. In our archival cases, eleven (1.21%) tumours co-expressing POU2F3, KIT, and BCL2 on immunohistochemistry, i.e., were presumable tuft cell-like cancers. In three among five TCGA cohorts, the tuft cell-like cancer subsets expressed SLFN11, a promising biomarker of PARP inhibitor susceptibility. CONCLUSIONS: Tuft cell-like carcinomas form distinct subsets in cancers of many organs. It appears warranted to investigate their shared gene expression signature as a predictive biomarker for novel therapeutic strategies.


Assuntos
Carcinoma , Transcriptoma , Humanos , Células Epiteliais/patologia , Carcinoma/patologia , Biomarcadores/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Nucleares/metabolismo
5.
Cancer Sci ; 113(10): 3417-3427, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924439

RESUMO

Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Animais , Apoptose , Linhagem Celular Tumoral , Cromatina , Neoplasias Colorretais/patologia , DNA Helicases , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares , Fatores de Transcrição
6.
Cell Stem Cell ; 29(8): 1246-1261.e6, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931033

RESUMO

Lgr5+ intestinal stem cells (ISCs) depend on niche factors for their proper function. However, the source of these ISC niche factors and how they support ISCs in vivo remain controversial. Here, we report that ISCs depend on lymphatic endothelial cells (LECs) and RSPO3+GREM1+ fibroblasts (RGFs). In the intestine and colon, LECs are surrounded by RGFs and are located near ISCs at the crypt base. Both LECs and RGFs provide the critical ISC niche factor RSPO3 to support ISCs, where RSPO3 loss in both cell types drastically compromises ISC numbers, villi length, and repair after injury. In response to injury, LEC and RGF numbers expand and produce greater amounts of RSPO3 and other growth/angiocrine factors to foster intestinal repair. We propose that LECs represent a novel niche component for ISCs, which together with RGFs serve as the major in vivo RSPO3 source for ISCs in homeostasis and injury-mediated regeneration.


Assuntos
Células Endoteliais , Células-Tronco , Fibroblastos , Homeostase , Mucosa Intestinal/metabolismo , Intestinos , Células-Tronco/metabolismo
8.
Nat Biomed Eng ; 6(4): 476-494, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314801

RESUMO

The cellular composition of barrier epithelia is essential to organismal homoeostasis. In particular, within the small intestine, adult stem cells establish tissue cellularity, and may provide a means to control the abundance and quality of specialized epithelial cells. Yet, methods for the identification of biological targets regulating epithelial composition and function, and of small molecules modulating them, are lacking. Here we show that druggable biological targets and small-molecule regulators of intestinal stem cell differentiation can be identified via multiplexed phenotypic screening using thousands of miniaturized organoid models of intestinal stem cell differentiation into Paneth cells, and validated via longitudinal single-cell RNA-sequencing. We found that inhibitors of the nuclear exporter Exportin 1 modulate the fate of intestinal stem cells, independently of known differentiation cues, significantly increasing the abundance of Paneth cells in the organoids and in wild-type mice. Physiological organoid models of the differentiation of intestinal stem cells could find broader utility for the screening of biological targets and small molecules that can modulate the composition and function of other barrier epithelia.


Assuntos
Organoides , Celulas de Paneth , Animais , Diferenciação Celular , Intestinos , Camundongos , Celulas de Paneth/fisiologia , Células-Tronco
9.
Cancer Res ; 82(9): 1803-1817, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35247892

RESUMO

Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFß pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFß signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFß pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE: This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Carcinoma in Situ , Lesões Pré-Cancerosas , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Pigmentos Biliares/metabolismo , Neoplasias do Sistema Biliar/genética , Carcinoma in Situ/patologia , Humanos , Camundongos , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/genética
10.
J Pathol ; 255(3): 257-269, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415580

RESUMO

Tumor cells capable of self-renewal and continuous production of progeny cells are called tumor stem cells (TSCs) and are considered to be potential therapeutic targets. However, the mechanisms underlying the survival and function of TSCs are not fully understood. We previously reported that chromatin remodeling regulator Brg1 is essential for intestinal stem cells in mice and Dclk1 is an intestinal TSC marker. In this study, we investigated the role of Brg1 in Dclk1+ intestinal tumor cells for the maintenance of intestinal tumors in mice. Specific ablation of Brg1 in Dclk1+ intestinal tumor cells reduced intestinal tumors in ApcMin mice, and continuous ablation of Brg1 maintained the reduction of intestinal tumors. Lineage tracing in the context of Brg1 ablation in Dclk1+ intestinal tumor cells revealed that Brg1-null Dclk1+ intestinal tumor cells did not give rise to their descendent tumor cells, indicating that Brg1 is essential for the self-renewal of Dclk1+ intestinal tumor cells. Five days after Brg1 ablation, we observed increased apoptosis in Dclk1+ tumor cells. Furthermore, Brg1 was crucial for the stemness of intestinal tumor cells in a spheroid culture system. BRG1 knockdown also impaired cell proliferation and increased apoptosis in human colorectal cancer (CRC) cells. Microarray analysis revealed that apoptosis-related genes were upregulated and stem cell-related genes were downregulated in human CRC cells by BRG1 suppression. Consistently, high BRG1 expression correlated with poor disease-specific survival in human CRC patients. These data indicate that Brg1 plays a crucial role in intestinal TSCs in mice by inhibiting apoptosis and is critical for cell survival and stem cell features in human CRC cells. Thus, BRG1 represents a new therapeutic target for human CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Colorretais/patologia , DNA Helicases/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos
11.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393460

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.


Assuntos
Adenocarcinoma/fisiopatologia , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem da Célula/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/fisiopatologia , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia
12.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360551

RESUMO

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Assuntos
Apoptose , Carcinoma Ductal Pancreático/enzimologia , Transformação Celular Neoplásica/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pancreáticas/enzimologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
13.
Nature ; 577(7789): 260-265, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853061

RESUMO

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer1-3. However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Colite Ulcerativa/genética , Taxa de Mutação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Neoplasias Colorretais/genética , Humanos , Camundongos , Transdução de Sinais
14.
Sci Rep ; 9(1): 15244, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645712

RESUMO

Colonic epithelial cells comprise the mucosal barrier, and their dysfunction promotes microbial invasion from the gut lumen and induces the development of intestinal inflammation. The EP4 receptor is known to mediate the protective effect of prostaglandin (PG) E2 in the gastrointestinal tract; however, the exact role of epithelial EP4 in intestinal pathophysiology remains unknown. In the present study, we aimed to investigate the role of epithelial EP4 in maintaining colonic homeostasis by characterizing the intestinal epithelial cell-specific EP4 knockout (EP4 cKO) mice. Mice harboring the epithelial EP4 deletion showed significantly lower colonic crypt depth and lower numbers of secretory cell lineages, as well as impaired epithelial cells in the colon. Interestingly, EP4-deficient colon epithelia showed a higher number of apoptotic cells. Consistent with the defect in mucosal barrier function of colonic epithelia and secretory cell lineages, EP4 cKO colon stroma showed enhanced immune cell infiltration, which was accompanied by increased production of inflammatory cytokines. Furthermore, EP4-deficient colons were susceptible to dextran sulfate sodium (DSS)-induced colitis. Our study is the first to demonstrate that epithelial EP4 loss resulted in potential "inflammatory" status under physiological conditions. These findings provided insights into the crucial role of epithelial PGE2/EP4 axis in maintaining intestinal homeostasis.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/patologia , Mucosa Intestinal/patologia , Receptores de Prostaglandina E Subtipo EP4/genética , Animais , Apoptose , Colite Ulcerativa/induzido quimicamente , Colo/ultraestrutura , Sulfato de Dextrana , Deleção de Genes , Camundongos , Camundongos Knockout
15.
Proc Natl Acad Sci U S A ; 116(26): 12996-13005, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182574

RESUMO

Cancer stem cell (CSC)-specific markers may be potential therapeutic targets. We previously identified that Dclk1, a tuft cell marker, marks tumor stem cells (TSCs) in mouse intestinal adenomas. Based on the analysis of mouse Dclk1+ tumor cells, we aimed to identify a CSC-specific cell surface marker in human colorectal cancers (hCRCs) and validate the therapeutic effect of targeting it. IL17RB was distinctively expressed by Dclk1+ mouse intestinal tumor cells. Using Il17rb-CreERT2-IRES-EGFP mice, we show that IL17RB marked intestinal TSCs in an IL13-dependent manner. Tuft cell-like cancer cells were detected in a subset of hCRCs. In these hCRCs, lineage-tracing experiments in CRISPR-Cas9-mediated IL17RB-CreERT2 knockin organoids and xenograft tumors revealed that IL17RB marks CSCs that expand independently of IL-13. We observed up-regulation of POU2F3, a master regulator of tuft cell differentiation, and autonomous tuft cell-like cancer cell differentiation in the hCRCs. Furthermore, long-term ablation of IL17RB-expressing CSCs strongly suppressed the tumor growth in vivo. These findings reveal insights into a CSC-specific marker IL17RB in a subset of hCRCs, and preclinically validate IL17RB+ CSCs as a cancer therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Interleucina-17/metabolismo , Animais , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas/genética , Carcinogênese , Diferenciação Celular , Linhagem da Célula , Quinases Semelhantes a Duplacortina , Técnicas de Introdução de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-17/genética , Esferoides Celulares , Imagem com Lapso de Tempo , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Proc Natl Acad Sci U S A ; 116(5): 1704-1713, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635419

RESUMO

Inactivating mutations of Arid1a, a subunit of the Switch/sucrose nonfermentable chromatin remodeling complex, have been reported in multiple human cancers. Intestinal deletion of Arid1a has been reported to induce colorectal cancer in mice; however, its functional role in intestinal homeostasis remains unclear. We investigated the functional role of Arid1a in intestinal homeostasis in mice. We found that intestinal deletion of Arid1a results in loss of intestinal stem cells (ISCs), decreased Paneth and goblet cells, disorganized crypt-villous structures, and increased apoptosis in adult mice. Spheroids did not develop from intestinal epithelial cells deficient for Arid1a Lineage-tracing experiments revealed that Arid1a deletion in Lgr5+ ISCs leads to impaired self-renewal of Lgr5+ ISCs but does not perturb intestinal homeostasis. The Wnt signaling pathway, including Wnt agonists, receptors, and target genes, was strikingly down-regulated in Arid1a-deficient intestines. We found that Arid1a directly binds to the Sox9 promoter to support its expression. Remarkably, overexpression of Sox9 in intestinal epithelial cells abrogated the above phenotypes, although Sox9 overexpression in intestinal epithelial cells did not restore the expression levels of Wnt agonist and receptor genes. Furthermore, Sox9 overexpression permitted development of spheroids from Arid1a-deficient intestinal epithelial cells. In addition, deletion of Arid1a concomitant with Sox9 overexpression in Lgr5+ ISCs restores self-renewal in Arid1a-deleted Lgr5+ ISCs. These results indicate that Arid1a is indispensable for the maintenance of ISCs and intestinal homeostasis in mice. Mechanistically, this is mainly mediated by Sox9. Our data provide insights into the molecular mechanisms underlying maintenance of ISCs and intestinal homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Animais , Células Epiteliais/metabolismo , Homeostase/fisiologia , Intestinos/fisiologia , Camundongos , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição , Via de Sinalização Wnt/fisiologia
17.
Gut ; 68(5): 882-892, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29798841

RESUMO

OBJECTIVE: Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN: We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS: We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION: Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.


Assuntos
Carcinoma Ductal Pancreático/prevenção & controle , Metaloendopeptidases/fisiologia , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/prevenção & controle , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/metabolismo , Pancreatite/patologia
18.
J Clin Invest ; 128(8): 3475-3489, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010625

RESUMO

Chromatin remodeler Brahma related gene 1 (BRG1) is silenced in approximately 10% of human pancreatic ductal adenocarcinomas (PDAs). We previously showed that BRG1 inhibits the formation of intraductal pancreatic mucinous neoplasm (IPMN) and that IPMN-derived PDA originated from ductal cells. However, the role of BRG1 in pancreatic intraepithelial neoplasia-derived (PanIN-derived) PDA that originated from acinar cells remains elusive. Here, we found that exclusive elimination of Brg1 in acinar cells of Ptf1a-CreER; KrasG12D; Brg1fl/fl mice impaired the formation of acinar-to-ductal metaplasia (ADM) and PanIN independently of p53 mutation, while PDA formation was inhibited in the presence of p53 mutation. BRG1 bound to regions of the Sox9 promoter to regulate its expression and was critical for recruitment of upstream regulators, including PDX1, to the Sox9 promoter and enhancer in acinar cells. SOX9 expression was downregulated in BRG1-depleted ADMs/PanINs. Notably, Sox9 overexpression canceled this PanIN-attenuated phenotype in KBC mice. Furthermore, Brg1 deletion in established PanIN by using a dual recombinase system resulted in regression of the lesions in mice. Finally, BRG1 expression correlated with SOX9 expression in human PDAs. In summary, BRG1 is critical for PanIN initiation and progression through positive regulation of SOX9. Thus, the BRG1/SOX9 axis is a potential target for PanIN-derived PDA.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , DNA Helicases/biossíntese , Proteínas Nucleares/biossíntese , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , DNA Helicases/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Elementos de Resposta , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
19.
Dig Liver Dis ; 50(12): 1353-1361, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001952

RESUMO

BACKGROUND: Accumulating evidence has shown the existence of tumor stem cells with therapeutic potential. Previously, we reported that doublecortin like kinase 1 (Dclk1) marks tumor stem cells but not normal stem cells in the intestine of ApcMin/+ mice, and that Dclk1- and Lgr5-double positive tumor cells are the tumor stem cells of intestinal tumors. AIM: To investigate molecules highly expressed in the Dclk1+ normal intestinal and Dclk1+ tumor cells in ApcMin/+ mice. METHODS: We used microarray analyses to examine the gene expression profile of Dclk1+ cells in both mouse normal intestinal epithelium and ApcMin/+ mouse intestinal tumors. We also performed immunofluorescence analyses. RESULTS: Genes related to microtubules and the actin cytoskeleton (e.g., Rac2), and members of the Src family kinases (i.e., Hck, Lyn, Csk, and Ptpn6) were highly expressed in both Dclk1+ normal intestinal and Dclk1+ tumor cells. Phosphorylated Hck and phosphorylated Lyn were expressed in Lgr5+ cells in the intestinal tumors of Lgr5EGFP-IRES-CreERT2/+; ApcMin/+ mice. CONCLUSION: We revealed factors that are highly expressed in Dclk1+ intestinal tumor cells, which may help to develop cancer stem cell-targeted therapy in future.


Assuntos
Mucosa Intestinal/metabolismo , Neoplasias Intestinais/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transcriptoma , Animais , Quinases Semelhantes a Duplacortina , Camundongos , Análise em Microsséries , Fosforilação , Proteínas Proto-Oncogênicas c-hck/metabolismo , Receptores Acoplados a Proteínas G/genética , Quinases da Família src/metabolismo
20.
JCI Insight ; 3(8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29669932

RESUMO

Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/metabolismo , Metaloendopeptidases/metabolismo , Metaloendopeptidases/uso terapêutico , Adulto , Idoso , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Modelos Animais de Doenças , Epigenômica , Feminino , Deleção de Genes , Histona Desacetilase 1 , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...