Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914985

RESUMO

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Água Doce , Estações do Ano
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190524, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892732

RESUMO

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Atmosfera/análise , Mudança Climática , Secas , Fazendas , Florestas , Pradaria , Áreas Alagadas , Europa (Continente)
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190685, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892736

RESUMO

Peatland rewetting aims at stopping the emissions of carbon dioxide (CO2) and establishing net carbon sinks. However, in times of global warming, restoration projects must increasingly deal with extreme events such as drought periods. Here, we evaluate the effect of the European summer drought 2018 on vegetation development and the exchange of methane (CH4) and CO2 in two rewetted minerotrophic fens (Hütelmoor-Hte and Zarnekow-Zrk) including potential carry-over effects in the post-drought year. Drought was a major stress factor for the established vegetation but also promoted the rapid spread of new vegetation, which will likely gain a lasting foothold in Zrk. Accordingly, drought increased not only respiratory CO2 losses but also photosynthetic CO2 uptake. Altogether, the drought reduced the net CO2 sink in Hte, while it stopped the persistent net CO2 emissions of Zrk. In addition, the drought reduced CH4 emissions in both fens, though this became most apparent in the post-drought year and suggests a lasting shift towards non-methanogenic organic matter decomposition. Occasional droughts can be beneficial for the restoration of the peatland carbon sink function if the newly grown vegetation increases CO2 sequestration in the long term. Nonetheless, care must be taken to prevent extensive peat decay. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Mudança Climática , Secas , Gases de Efeito Estufa/análise , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Dióxido de Carbono/análise , Sequestro de Carbono , Europa (Continente) , Aquecimento Global , Dispersão Vegetal
4.
J Microencapsul ; 36(1): 72-82, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30916612

RESUMO

Microparticles made from hydrogenated sunflower oil without essential oil and with different essential oil concentrations (75-300 g/kg; g of essential oil per kg of microparticles) were stored for 1 or 2 months at 25 or 37 °C. Before and after storage the essential oil concentration, flowability, optical appearance, melting behaviour and crystalline structure of the microparticles were investigated. Essential oil recovery, melting behaviour and crystalline structure were identical for the essential oil containing microparticles and were not affected during storage. The surface structure of the microparticles varied with their essential oil concentration. While the particles containing 75 g/kg essential oil were covered by erect fat crystals, those with 225 g/kg and higher were mostly smooth with some round shaped dumps. However, the surface of all essential oil containing microparticle batches had reached their final stage after production already and did not change during storage. Microparticles without essential oil presented two melting peaks; all microparticle batches with essential oil had one peak. Peaks in the X-ray scattering powder diffraction signal of the essential oil-free microparticles after production can be associated with the α-form of the hydrogenated vegetable oil. During storage, a conversion of the α-form to the stable ß-form was observed. Microscopy showed that these microparticles also developed strong fat crystals throughout storage. The triglycerides in microparticles with essential oil seem to directly take on the stable ß-form. The formation of robust microparticle agglomerates during storage was prevalently observed for the fat crystal forming product batches, meaning the products without or with low essential oil concentration.


Assuntos
Helianthus/química , Óleos Voláteis/química , Óleos de Plantas/química , Cristalização , Hidrogenação , Tamanho da Partícula , Propriedades de Superfície , Temperatura de Transição , Triglicerídeos/química
5.
J Microencapsul ; 35(6): 513-521, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30160590

RESUMO

Microparticles with different essential oil concentrations 0, 75, 150, 225 and 300 gkg-1, (g of essential oil per kg of microparticles), were produced by dispersing the essential oils within a hydrogenated vegetable fat matrix and forming spherical solid particles by spray-chilling. Size distribution, flowability, surface structure, essential oil recovery, melting properties and crystallinity of the microparticles were determined. With over 225 gkg-1 essential oil the microparticle surface became stickier, their flowability was reduced and the size distribution broadened. Gas chromatography showed that the essential oil recovery was always above 85% v/v. The surface structure of the microparticles was strongly affected by the essential oil concentration being smooth (225 gkg-1), comprising round-shaped dumps (300 gkg-1) or showing fat blooming (0, 75, 150 gkg-1). With essential oil, the formation of the ß-polymorphic form of the triglycerides was supported leading to changes in the melting behaviour and the crystalline structure.


Assuntos
Nanopartículas , Óleos Voláteis/química , Cristalização , Composição de Medicamentos , Hidrogenação , Tamanho da Partícula , Pós , Propriedades de Superfície , Difração de Raios X
6.
Proc Natl Acad Sci U S A ; 114(11): 2848-2853, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223487

RESUMO

Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.


Assuntos
Prognóstico , Selênio/metabolismo , Poluentes do Solo/química , Oligoelementos/metabolismo , Mudança Climática , Monitoramento Ambiental , Humanos , Fatores de Risco , Selênio/química , Solo/química , Poluentes do Solo/isolamento & purificação , Oligoelementos/química
7.
Sci Total Environ ; 465: 267-72, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22959898

RESUMO

Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas.

8.
Environ Sci Technol ; 46(3): 1624-31, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191398

RESUMO

Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.


Assuntos
Carbono/análise , Substâncias Húmicas/análise , Modelos Químicos , Salinidade , Solo/química , Clima , Simulação por Computador , Índia , Plantas/química , Austrália do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...