Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(8): 5430-5448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38412088

RESUMO

Source-free domain adaptation (SFDA) shows the potential to improve the generalizability of deep learning-based face anti-spoofing (FAS) while preserving the privacy and security of sensitive human faces. However, existing SFDA methods are significantly degraded without accessing source data due to the inability to mitigate domain and identity bias in FAS. In this paper, we propose a novel Source-free Domain Adaptation framework for FAS (SDA-FAS) that systematically addresses the challenges of source model pre-training, source knowledge adaptation, and target data exploration under the source-free setting. Specifically, we develop a generalized method for source model pre-training that leverages a causality-inspired PatchMix data augmentation to diminish domain bias and designs the patch-wise contrastive loss to alleviate identity bias. For source knowledge adaptation, we propose a contrastive domain alignment module to align conditional distribution across domains with a theoretical equivalence to adaptation based on source data. Furthermore, target data exploration is achieved via self-supervised learning with patch shuffle augmentation to identify unseen attack types, which is ignored in existing SFDA methods. To our best knowledge, this paper provides the first full-stack privacy-preserving framework to address the generalization problem in FAS. Extensive experiments on nineteen cross-dataset scenarios show our framework considerably outperforms state-of-the-art methods.

2.
IEEE Trans Pattern Anal Mach Intell ; 41(3): 523-536, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29994059

RESUMO

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+, and Market1501. The evaluation codebase and results will be made publicly available for community use.

3.
Sci Rep ; 7(1): 10759, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883434

RESUMO

We describe a computer vision-based mosaicking method for in vivo videos of reflectance confocal microscopy (RCM). RCM is a microscopic imaging technique, which enables the users to rapidly examine tissue in vivo. Providing resolution at cellular-level morphology, RCM imaging combined with mosaicking has shown to be highly sensitive and specific for non-invasively guiding skin cancer diagnosis. However, current RCM mosaicking techniques with existing microscopes have been limited to two-dimensional sequences of individual still images, acquired in a highly controlled manner, and along a specific predefined raster path, covering a limited area. The recent advent of smaller handheld microscopes is enabling acquisition of videos, acquired in a relatively uncontrolled manner and along an ad-hoc arbitrarily free-form, non-rastered path. Mosaicking of video-images (video-mosaicking) is necessary to display large areas of tissue. Our video-mosaicking methods addresses this need. The method can handle unique challenges encountered during video capture such as motion blur artifacts due to rapid motion of the microscope over the imaged area, warping in frames due to changes in contact angle and varying resolution with depth. We present test examples of video-mosaics of melanoma and non-melanoma skin cancers, to demonstrate potential clinical utility.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Microscopia Confocal/instrumentação , Microscopia de Vídeo/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...