Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1389: 515-533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350521

RESUMO

DNA methylation is an essential epigenetic mark, strongly associated with gene expression regulation. Aberrant DNA methylation patterns underlie various diseases and efforts to intervene with DNA methylation signatures are of great clinical interest. Technological developments to target writers or erasers of DNA methylation to specific genomic loci by epigenetic editing resulted in successful gene expression modulation, also in in vivo models. Application of epigenetic editing in human health could have a huge impact, but clinical translation is still challenging. Despite successes for a wide variety of genes, not all genes mitotically maintain their (de)methylation signatures after editing, and reprogramming requires further understanding of chromatin context-dependency. In addition, difficulties of current delivery systems and off-target effects are hurdles to be tackled. The present review describes findings towards effective and sustained DNA (de)methylation by epigenetic editing and discusses the need for multi-effector approaches to achieve highly efficient long-lasting reprogramming.


Assuntos
Metilação de DNA , Edição de Genes , Humanos , Metilação de DNA/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Epigênese Genética , Expressão Gênica
2.
Biomedicines ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36672610

RESUMO

Plasminogen activator, urokinase (PLAU) is involved in cell migration, proliferation and tissue remodeling. PLAU upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis. These clinical findings have led to the examination of PLAU as a biomarker for predicting breast cancer prognosis and therapy responses. In this study, we investigated the functional ability of PLAU to act as an oncogene in breast cancers by modulating its expression using CRISPR-deactivated Cas9 (CRISPR-dCas9) tools. Different effector domains (e.g., transcription modulators (VP64, KRAB)) alone or in combination with epigenetic writers (DNMT3A/3L, MSssI) were fused to dCas9 and targeted to the PLAU promoter. In MDA-MB-231 cells characterized by high PLAU expression downregulation of PLAU expression by CRISPR-dCas9-DNMT3A/3L-KRAB, resulted in decreased cell proliferation. Conversely, CRISPR-dCas9-VP64 induced PLAU upregulation in low PLAU expressing MCF-7 cells and significantly increased aggressiveness and invasion. In conclusion, modulation of PLAU expression affected metastatic related properties of breast cancer cells, thus further validating its oncogenic activity in breast cancer cells.

3.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455614

RESUMO

Epigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks. Here we tested whether the fibrosis- and cancer-associated PLOD2 gene can be repressed by the DNA methyltransferase M.SssI, or by the non-catalytic Krüppel associated box (KRAB) repressor directed to the PLOD2 promoter via zinc finger- or CRISPR-dCas9-mediated targeting. M.SssI fusions induced de novo DNA methylation, changed histone modifications in a context-dependent manner, and led to 50%-70% reduction in PLOD2 expression in fibrotic fibroblasts and in MDA-MB-231 cancer cells. Targeting KRAB to PLOD2 resulted in the deposition of repressive histone modifications without DNA methylation and in almost complete PLOD2 silencing. Interestingly, both long-term TGFß1-induced, as well as unstimulated PLOD2 expression, was completely repressed by KRAB, while M.SssI only prevented the TGFß1-induced PLOD2 expression. Targeting transiently expressed dCas9-KRAB resulted in sustained PLOD2 repression in HEK293T and MCF-7 cells. Together, these findings point to KRAB outperforming DNA methylation as a small potent targeting epigenetic effector for silencing TGFß1-induced and uninduced PLOD2 expression.


Assuntos
Inativação Gênica , Heterocromatina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Adulto , Células Cultivadas , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Epigênese Genética , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Células MCF-7 , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismo
4.
Methods Mol Biol ; 1767: 395-415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29524148

RESUMO

Epigenetic editing is a promising approach to modulate the local chromatin environment of target genes with the ultimate goal of stable gene expression reprogramming. Epigenetic editing tools minimally consist of a DNA-binding domain and an effector domain. The CRISPR/dCas9 platform, where mutations in the nuclease domains render the Cas9 protein inactive, is widely used to guide epigenetic effectors to their intended genomic loci. Its flexible nature, simple use, and relatively low cost have revolutionized the research field of epigenetic editing. Although effective expression modulation is readily achieved, only a few studies have addressed the maintenance of the induced effects on endogenous loci. Here, we describe a detailed protocol to engineer cells that stably express the CRISPR/dCas9-effectors. The protocol involves modification of published dCas9-based plasmid vectors for easy transfer of the effector domain between the vector designed for transient transfection and the vector used for establishing cell lines stably expressing the dCas9-effector fusion protein. Transient transfection of the dCas9-effector-producing cells with sgRNA-expressing plasmids allows studying of the maintenance of epigenetic editing. Targeting various genes in different chromatin contexts and/or co-targeting multiple CRISPR/dCas9-effectors can be used to unravel rules underlying maintained gene expression reprogramming.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes/métodos , Clonagem Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigenômica , Vetores Genéticos/genética , Células HEK293 , Humanos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas Recombinantes de Fusão/genética , Transfecção/métodos
5.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L334-L347, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011616

RESUMO

Airway mucus hypersecretion contributes to the morbidity and mortality in patients with chronic inflammatory lung diseases. Reducing mucus production is crucial for improving patients' quality of life. The transcription factor SAM-pointed domain-containing Ets-like factor (SPDEF) plays a critical role in the regulation of mucus production and, therefore, represents a potential therapeutic target. This study aims to reduce lung epithelial mucus production by targeted silencing SPDEF using the novel strategy, epigenetic editing. Zinc fingers and CRISPR/dCas platforms were engineered to target repressors (KRAB, DNA methyltransferases, histone methyltransferases) to the SPDEF promoter. All constructs were able to effectively suppress both SPDEF mRNA and protein expression, which was accompanied by inhibition of downstream mucus-related genes [anterior gradient 2 (AGR2), mucin 5AC (MUC5AC)]. For the histone methyltransferase G9A, and not its mutant or other effectors, the obtained silencing was mitotically stable. These results indicate efficient SPDEF silencing and downregulation of mucus-related gene expression by epigenetic editing, in human lung epithelial cells. This opens avenues for epigenetic editing as a novel therapeutic strategy to induce long-lasting mucus inhibition.


Assuntos
Epigênese Genética , Células Epiteliais/metabolismo , Edição de Genes , Pulmão/citologia , Muco/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Sequência de Bases , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Regulação para Baixo/genética , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Biológicos , Mucina-5AC/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Dedos de Zinco
6.
Adv Exp Med Biol ; 945: 475-490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826848

RESUMO

Epigenetic regulation of gene expression is vital for the maintenance of genome integrity and cell phenotype. In addition, many different diseases have underlying epigenetic mutations, and understanding their role and function may unravel new insights for diagnosis, treatment, and even prevention of diseases. It was an important breakthrough when epigenetic alterations could be gene-specifically manipulated using epigenetic regulatory proteins in an approach termed epigenetic editing. Epigenetic editors can be designed for virtually any gene by targeting effector domains to a preferred sequence, where they write or erase the desired epigenetic modification. This chapter describes the tools for editing DNA methylation signatures and their applications. In addition, we explain how to achieve targeted DNA (de)methylation and discuss the advantages and disadvantages of this approach. Silencing genes directly at the DNA methylation level instead of targeting the protein and/or RNA is a major improvement, as repression is achieved at the source of expression, potentially eliminating the need for continuous administration. Re-expression of silenced genes by targeted demethylation might closely represent the natural situation, in which all transcript variants might be expressed in a sustainable manner. Altogether epigenetic editing, for example, by rewriting DNA methylation, will assist in realizing the curable genome concept.


Assuntos
Metilação de DNA/genética , DNA/genética , Epigênese Genética , Regulação da Expressão Gênica/genética , Edição de Genes , Inativação Gênica , Genoma Humano , Humanos , Terapia de Alvo Molecular , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...