Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952555

RESUMO

Throughout the COVID-19 pandemic, valuable datasets have been collected on the effects of the virus SARS-CoV-2. In this study, we combined whole genome sequencing data with clinical data (including clinical outcomes, demographics, comorbidity, treatment information) for 929 patient cases seen at a large UK hospital Trust between March 2020 and May 2021. We identified associations between acute physiological status and three measures of disease severity; admission to the intensive care unit (ICU), requirement for intubation, and mortality. Whilst the maximum National Early Warning Score (NEWS2) was moderately associated with severe COVID-19 (A = 0.48), the admission NEWS2 was only weakly associated (A = 0.17), suggesting it is ineffective as an early predictor of severity. Patient outcome was weakly associated with myriad factors linked to acute physiological status and human genetics, including age, sex and pre-existing conditions. Overall, we found no significant links between viral genomics and severe outcomes, but saw evidence that variant subtype may impact relative risk for certain sub-populations. Specific mutations of SARS-CoV-2 appear to have little impact on overall severity risk in these data, suggesting that emerging SARS-CoV-2 variants do not result in more severe patient outcomes. However, our results show that determining a causal relationship between mutations and severe COVID-19 in the viral genome is challenging. Whilst improved understanding of the evolution of SARS-CoV-2 has been achieved through genomics, few studies on how these evolutionary changes impact on clinical outcomes have been seen due to complexities associated with data linkage. By combining viral genomics with patient records in a large acute UK hospital, this study represents a significant resource for understanding risk factors associated with COVID-19 severity. However, further understanding will likely arise from studies of the role of host genetics on disease progression.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Pandemias , Medicina Estatal , Confiança , Unidades de Terapia Intensiva , Fatores de Risco , Hospitais , Intubação Intratraqueal , Reino Unido/epidemiologia
2.
Elife ; 112022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214451

RESUMO

The differentiation of oligodendroglia from oligodendrocyte precursor cells (OPCs) to complex and extensive myelinating oligodendrocytes (OLs) is a multistep process that involves large-scale morphological changes with significant strain on the cytoskeleton. While key chromatin and transcriptional regulators of differentiation have been identified, their target genes responsible for the morphological changes occurring during OL myelination are still largely unknown. Here, we show that the regulator of focal adhesion, Tensin3 (Tns3), is a direct target gene of Olig2, Chd7, and Chd8, transcriptional regulators of OL differentiation. Tns3 is transiently upregulated and localized to cell processes of immature OLs, together with integrin-ß1, a key mediator of survival at this transient stage. Constitutive <i>Tns3</i> loss of function leads to reduced viability in mouse and humans, with surviving knockout mice still expressing Tns3 in oligodendroglia. Acute deletion of <i>Tns3</i> in vivo, either in postnatal neural stem cells (NSCs) or in OPCs, leads to a twofold reduction in OL numbers. We find that the transient upregulation of Tns3 is required to protect differentiating OPCs and immature OLs from cell death by preventing the upregulation of p53, a key regulator of apoptosis. Altogether, our findings reveal a specific time window during which transcriptional upregulation of Tns3 in immature OLs is required for OL differentiation likely by mediating integrin-ß1 survival signaling to the actin cytoskeleton as OL undergo the large morphological changes required for their terminal differentiation.


Assuntos
Adesões Focais , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Adesões Focais/metabolismo , Proteína Supressora de Tumor p53/genética , Oligodendroglia/metabolismo , Diferenciação Celular/genética , Camundongos Knockout , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Integrinas/metabolismo
3.
Front Cell Infect Microbiol ; 12: 1066390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741977

RESUMO

Introduction: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future. Methods: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital. Results: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times. Discussion: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Infecção Hospitalar/epidemiologia , Pandemias/prevenção & controle , Genômica , Reino Unido/epidemiologia
4.
Front Cell Neurosci ; 14: 576650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192322

RESUMO

Background: Microglia are well known key regulators of neuroinflammation which feature in multiple neurodegenerative disorders. These cells survey the CNS and, under inflammatory conditions, become "activated" through stimulation of toll-like receptors (TLRs), resulting in changes in morphology and production and release of cytokines. In the present study, we examined the roles of the related TAM receptors, Mer and Axl, and of their ligand, Gas6, in the regulation of microglial pro-inflammatory TNF-α production and microglial morphology. Methods: Primary cultures of murine microglia of wild-type (WT), Mer-/- and Axl-/- backgrounds were stimulated by the TLR4 agonist, lipopolysaccharide (LPS) with or without pre-treatment with Gas6. Gene expression of TNF-α, Mer, and Axl was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) was used to measure TNF-α release from microglia. Immunofluorescence staining of ß-actin and the microglial marker Iba1 was performed to reveal microglial morphological changes, with cellular characteristics (area, perimeter, Feret's diameter, minimum Feret, roundness, and aspect ratio) being quantified using ImageJ software. Results: Under basal conditions, TNF-α gene expression was significantly lower in Axl-/- microglia compared to WT cells. However, all microglial cultures robustly responded to LPS stimulation with the upregulation of TNF-α expression to similar degrees. Furthermore, Mer receptor expression was less responsive to LPS stimulation when in Axl knockout cells. The presence of Gas6 consistently inhibited the LPS-induced upregulation of TNF-α in WT, Mer-/- and Axl-/- microglia. Moreover, Gas6 also inhibited LPS-induced changes in the microglial area, perimeter length, and cell roundness in wild-type cells. Conclusion: Gas6 can negatively regulate the microglial pro-inflammatory response to LPS as well as via stimulation of other TLRs, acting through either of the TAM receptors, Axl and Mer. This finding indicates an interaction between TLR and TAM receptor signaling pathways and reveals an anti-inflammatory role for the TAM ligand, Gas6, which could have therapeutic potential.

5.
Cells ; 9(8)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722558

RESUMO

The Gas6-TAM (Tyro3, Axl, Mer) ligand-receptor system is believed to promote central nervous system (CNS) (re)myelination and glial cell development. An additional important function of Gas6-TAM signalling appears to be the regulation of immunity and inflammation, which remains to be fully elucidated in the CNS. Here, we characterised the expression of TAM receptors and ligands in individual CNS glial cell types, observing high expression of Gas6 and the TAM receptors, Mer and Axl, in microglia, and high expression of Tyro3 in astrocytes. We also investigated the effect of Gas6 on the inflammatory cytokine response in the optic nerve and in mixed glial cell cultures from wildtype and single TAM receptor knockout mice. In wildtype and Mer-deficient cultures, Gas6 significantly stimulated the expression of the anti-inflammatory/pro-repair cytokines interleukin 10 (IL-10) and transforming growth factor ß (TGF-ß), whereas this effect was absent in either Tyro3 or Axl knockout cultures. Furthermore, Gas6 caused upregulation of myelin basic protein (MBP) expression in optic nerves, which was blocked by a neutralising antibody against IL-10. In conclusion, our data show that microglia are both a major source of Gas6 as well as an effector of Gas6 action in the CNS through the upregulation of anti-inflammatory and pro-repair mediators. Furthermore, the presence of both Axl and Tyro3 receptors appears to be necessary for these effects of Gas6. In addition, IL-10, alongside suppressing inflammation and immunity, mediates the pro-myelinating mechanism of Gas6 action in the optic nerve. Therefore, Gas6 may present an attractive target for novel therapeutic interventions for demyelinating as well as neuroinflammatory disorders of the CNS.


Assuntos
Inflamação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-10/metabolismo , Neuroglia/fisiologia , Substância Branca/fisiopatologia , Animais , Humanos , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
6.
ASN Neuro ; 8(5)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27630207

RESUMO

A key aim of therapy for multiple sclerosis (MS) is to promote the regeneration of oligodendrocytes and remyelination in the central nervous system (CNS). The present study provides evidence that the vitamin K-dependent protein growth arrest specific 6 (Gas6) promotes such repair in in vitro cultures of mouse optic nerve and cerebellum. We first determined expression of Gas6 and TAM (Tyro3, Axl, Mer) receptors in the mouse CNS, with all three TAM receptors increasing in expression through postnatal development, reaching maximal levels in the adult. Treatment of cultured mouse optic nerves with Gas6 resulted in significant increases in oligodendrocyte numbers as well as expression of myelin basic protein (MBP). Gas6 stimulation also resulted in activation of STAT3 in optic nerves as well as downregulation of multiple genes involved in MS development, including matrix metalloproteinase-9 (MMP9), which may decrease the integrity of the blood-brain barrier and is found upregulated in MS lesions. The cytoprotective effects of Gas6 were examined in in vitro mouse cerebellar slice cultures, where lysolecithin was used to induce demyelination. Cotreatment of cerebellar slices with Gas6 significantly attenuated demyelination as determined by MBP immunostaining, and Gas6 activated Tyro3 receptor through its phosphorylation. In conclusion, these results demonstrate that Gas6/TAM signaling stimulates the generation of oligodendrocytes and increased myelin production via Tyro3 receptor in the adult CNS, including repair after demyelinating injury. Furthermore, the effects of Gas6 on STAT3 signaling and matrix MMP9 downregulation indicate potential glial cell repair and immunoregulatory roles for Gas6, indicating that Gas6-TAM signaling could be a potential therapeutic target in MS and other neuropathologies.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lisofosfatidilcolinas/toxicidade , Oligodendroglia/fisiologia , Regeneração/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Nervo Óptico/citologia , Nervo Óptico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Regeneração/efeitos dos fármacos , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transdução de Sinais , Receptor Tirosina Quinase Axl
7.
Cell Mol Life Sci ; 70(9): 1663-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23233134

RESUMO

The gene for Disrupted-in-Schizophrenia 1 (DISC1) is amongst the most significant risk genes for schizophrenia. The DISC1 protein is an intracellular scaffolding molecule thought to act an important hub for protein interactions involved in signalling for neural cell differentiation and function. Tensin2 is an intracellular actin-binding protein that bridges the intracellular portion of transmembrane receptors to the cytoskeleton, thereby regulating signalling for cell shape and motility. In this study, we probed in molecular detail a novel interaction between DISC1 and Tensin2. Western blot and confocal microscopic analyses revealed widespread expression of both DISC1 and Tensin2 proteins throughout the mouse brain. Furthermore, we have developed novel anti-DISC1 antibodies that verified the predominant expression of a 105-kDa isoform of DISC1 in the rodent brain as well as in human cells. In the mouse brain, both proteins showed region-specific expression patterns, including strong expression in the pyramidal cell layer of the hippocampus and dentate gyrus. DISC1-Tensin2 colocalisation was most clearly observed in the Purkinje cells of the mouse cerebellum. Biochemical coimmunoprecipitation experiments revealed an interaction between endogenous DISC1 and Tensin2 proteins in the mouse brain. Further pulldown studies in human cells using Myc-tagged Tensin2 constructs revealed that DISC1 specifically interacts with the C-terminal PTB domain of Tensin2 in a phosphorylation-independent manner. This new knowledge on the DISC1-Tensin2 interaction, as part of the wider DISC1 interactome, should further elucidate the signalling pathways that are perturbed in schizophrenia and other mental disorders.


Assuntos
Encéfalo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Encéfalo/ultraestrutura , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/análise , Fosfoproteínas Fosfatases/análise , Monoéster Fosfórico Hidrolases/análise , Monoéster Fosfórico Hidrolases/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Tensinas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...