Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38760425

RESUMO

Considerable research has suggested that certain cognitive domains may contribute to cocaine misuse. However, there are gaps in the literature regarding whether cognitive performance before drug exposure predicts susceptibility to cocaine self-administration and how cognitive performance relates to future cocaine intake. Thus, the present study aimed to examine cognitive performance, as measured using automated CANTAB cognitive battery, prior to and following acquisition of cocaine self-administration under a concurrent drug vs. food choice procedure in female and male socially housed cynomolgus macaques. The cognitive battery consisted of measures of associative learning (stimulus and compound discrimination tasks), behavioral flexibility (intradimensional and extradimensional tasks), and behavioral inhibition (stimulus discrimination reversal, SDR, and extra-dimensional reversal tasks). After assessing cognitive performance, monkeys were trained to self-administer cocaine (saline, 0.01-0.1 mg/kg/injection) under a concurrent cocaine vs. food schedule of reinforcement. After a history of cocaine self-administration across 3-4 years, the cognitive battery was re-assessed and compared with sensitivity to cocaine reinforcement. Results showed drug-naïve monkeys that were less accurate on the SDR task, measuring behavioral inhibition, were more sensitive to cocaine reinforcement under the concurrent cocaine vs. food choice procedure. Furthermore, following chronic cocaine self-administration, cocaine intake was a negative predictor of accuracy on the SDR behavioral inhibition task. After cocaine maintenance, monkeys with higher cocaine intakes required more trials to complete the SDR behavioral inhibition task and made more incorrect responses during these trials. No sex or social rank differences were noted. Overall, these findings suggest that cognitive performance may influence vulnerability to cocaine misuse. Also, chronic cocaine may decrease levels of behavioral inhibition as measured via the SDR task in both females and males.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38399452

RESUMO

Sex- and age-related differences in symptom prevalence and severity have been widely reported in patients with schizophrenia, yet the underlying mechanisms contributing to these differences are not well understood. N-methyl-D-aspartate (NMDA) receptor hypofunction contributes to schizophrenia pathology, and preclinical models often use NMDA receptor antagonists, including MK-801, to model all symptom clusters. Quantitative electroencephalography (qEEG) represents a translational approach to measure neuronal activity, identify targetable biomarkers in neuropsychiatric disorders and evaluate possible treatments. Abnormalities in gamma power have been reported in patients with schizophrenia and correspond to psychosis and cognitive impairment. Further, as gamma power reflects cortical glutamate and GABA signaling, it is highly sensitive to changes in NMDA receptor function, and NMDA receptor antagonists aberrantly increase gamma power in rodents and humans. To evaluate the role of sex and age on NMDA receptor function, MK-801 (0.03-0.3 mg/kg, SC) was administered to 3- and 9-month-old male and female Sprague-Dawley rats that were implanted with wireless EEG transmitters to measure cortical brain function. MK-801-induced elevations in gamma power were observed in 3-month-old male and female and 9-month-old male rats. In contrast, 9-month-old female rats demonstrated blunted maximal elevations across a wide dose range. Importantly, MK-801-induced hyperlocomotor effects, a common behavioral screen used to examine antipsychotic-like activity, were similar across all groups. Overall, sex-by-age-related differences in gamma power support using qEEG as a translational tool to evaluate pathological progression and predict treatment response across a heterogeneous population.

3.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38100268

RESUMO

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Assuntos
Interferon gama , Sepse , Humanos , Interferon gama/metabolismo , Imunoadsorventes/uso terapêutico , Estudos Prospectivos , Biomarcadores
5.
Int Rev Neurobiol ; 168: 93-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868636

RESUMO

Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Receptores de Glutamato Metabotrópico , Humanos , Sistema Nervoso Central , Sono , Glutamatos
6.
Neuropharmacology ; 227: 109424, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720403

RESUMO

Recent evidence suggests that inhibition of the M5 muscarinic acetylcholine receptor (mAChR) may provide a novel non-opioid mechanism for the treatment of opioid use disorder (OUD). Previous studies from our group and others have demonstrated that acute administration of the long-acting M5 negative allosteric modulator (NAM) ML375 attenuates established self-administration of cocaine, ethanol, oxycodone, and remifentanil in rats. In the present study, we characterized the effects of acute and repeated administration of the novel, short-acting M5 NAM VU6008667 on the reinforcing effects of oxycodone and reinstatement of oxycodone-seeking behaviors in male Sprague-Dawley rats, as well as on physiological withdrawal from oxycodone. Acute VU6008667 decreased oxycodone self-administration under both fixed ratio 3 (FR3) and progressive ratio (PR) schedules of reinforcement and attenuated cue-induced reinstatement of lever pressing following extinction from oxycodone self-administration, a commonly used relapse model. When administered daily to opioid-naïve rats, VU6008667 prevented acquisition of oxycodone self-administration behavior. VU6008667 had minimal effects on naloxone-precipitated withdrawal. After acute administration, VU6008667 did not inhibit sucrose self-administration and, when given chronically, delayed but did not prevent acquisition of sucrose maintained self-administration. VU6008667 also did not impact oxycodone induced anti-nociception or motor coordination, but mildly decreased novelty exploration. Finally, acute or daily VU6008667 administration did not impair cued fear conditioning. Overall, these results suggest that inhibition of the M5 mAChR may provide a novel, non-opioid based treatment for distinct aspects of OUD by inhibiting opioid intake in established OUD, reducing relapse during abstinence, and by reducing the risk of developing OUD.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Animais , Masculino , Ratos , Oxicodona , Ratos Sprague-Dawley , Receptores Muscarínicos , Autoadministração , Sacarose/farmacologia
7.
Biomolecules ; 12(4)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35454099

RESUMO

Cocaine use disorder has been reported to cause transgenerational effects. However, due to the lack of standardized biomarkers, the effects of cocaine use during pregnancy on postnatal development and long-term neurobiological and behavioral outcomes have not been investigated thoroughly. Therefore, in this study, we examined extracellular vesicles (EVs) in adult (~12 years old) female and male rhesus monkeys prenatally exposed to cocaine (n = 11) and controls (n = 9). EVs were isolated from the cerebrospinal fluid (CSF) and characterized for the surface expression of specific tetraspanins, concentration (particles/mL), size distribution, and cargo proteins by mass spectrometry (MS). Transmission electron microscopy following immunogold labeling for tetraspanins (CD63, CD9, and CD81) confirmed the successful isolation of EVs. Nanoparticle tracking analyses showed that the majority of the particles were <200 nm in size, suggesting an enrichment for small EVs (sEV). Interestingly, the prenatally cocaine-exposed group showed ~54% less EV concentration in CSF compared to the control group. For each group, MS analyses identified a number of proteins loaded in CSF-EVs, many of which are commonly listed in the ExoCarta database. Ingenuity pathway analysis (IPA) demonstrated the association of cargo EV proteins with canonical pathways, diseases and disorders, upstream regulators, and top enriched network. Lastly, significantly altered proteins between groups were similarly characterized by IPA, suggesting that prenatal cocaine exposure could be potentially associated with long-term neuroinflammation and risk for neurodegenerative diseases. Overall, these results indicate that CSF-EVs could potentially serve as biomarkers to assess the transgenerational adverse effects due to prenatal cocaine exposure.


Assuntos
Cocaína , Vesículas Extracelulares , Animais , Biomarcadores/metabolismo , Cocaína/efeitos adversos , Cocaína/análise , Cocaína/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Macaca mulatta , Masculino , Espectrometria de Massas , Gravidez , Proteoma/metabolismo , Tetraspaninas/metabolismo
8.
Front Neurosci ; 15: 700822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276300

RESUMO

Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.

9.
Pharmacol Biochem Behav ; 207: 173217, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116078

RESUMO

BACKGROUND: Drugs that increase inhibitory neuronal activity in the brain have been proposed as potential medications for stimulant use disorders. OBJECTIVE: The present study assessed the ability of chronically administered levetiracetam (Keppra®), a clinically available anticonvulsant drug that increases GABA by binding to synaptic vesicle glycoprotein 2A, to modulate the reinforcing strength of cocaine in monkeys. METHODS: Three adult male rhesus monkeys (Macaca mulatta) self-administered cocaine intravenously each day under a progressive-ratio (PR) schedule of reinforcement. Two monkeys also responded to receive food pellets under a 50-response fixed-ratio schedule (FR 50) each morning. After determining a cocaine dose-response curve (0.001-0.3 mg/kg per injection, i.v.) in the evening, levetiracetam (5-75 mg/kg, p.o., b.i.d.) was administered for 12-16 days per dose. To model a treatment setting, cocaine self-administration sessions were conducted using the PR schedule every 4 days during levetiracetam treatment. After tapering the dose of levetiracetam over two weeks in the absence of cocaine sessions, cocaine dose-effect curves were re-determined. RESULTS: Lower doses of levetiracetam produced non-systematic fluctuations in numbers of cocaine injections received in each subject, whereas the highest tested dose significantly increased the reinforcing strength of cocaine; no effects on food-maintained responding were observed. After termination of levetiracetam treatment, dose-effect curves for cocaine self-administration were shifted to the left in two monkeys. CONCLUSION: These data suggest that levetiracetam is not likely to be an efficacious pharmacotherapy for cocaine dependence. Rather, sensitivity to cocaine may be increased during and after levetiracetam treatment.


Assuntos
Anticonvulsivantes/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/farmacologia , Levetiracetam/farmacologia , Reforço Psicológico , Animais , Anticonvulsivantes/administração & dosagem , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Levetiracetam/administração & dosagem , Macaca mulatta , Masculino , Esquema de Reforço , Autoadministração
10.
Neuropsychopharmacology ; 45(13): 2219-2228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32868847

RESUMO

Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.


Assuntos
Doenças Neurodegenerativas , Roedores , Regulação Alostérica , Animais , Nível de Alerta , Camundongos , Primatas , Piridinas , Pirróis , Ratos , Receptor Muscarínico M1 , Sono
11.
Genes Brain Behav ; 19(7): e12654, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32248644

RESUMO

Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/genética , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de Glutamato Metabotrópico/genética , Animais , Feminino , Aprendizagem , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Receptores de Glutamato Metabotrópico/deficiência , Sono , Comportamento Social
12.
Adv Pharmacol ; 86: 153-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31378251

RESUMO

Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.


Assuntos
Receptores Muscarínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/química , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Humanos , Transdução de Sinais
13.
ACS Chem Neurosci ; 10(8): 3740-3750, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31268669

RESUMO

Opioid use disorder (OUD) is a debilitating neuropsychiatric condition characterized by compulsive opioid use, dependence, and repeated relapse after periods of abstinence. Given the high risk of developing OUD following prescription opioid use, the continued need for opioid-induced analgesia, and the limitations of current OUD treatments, it is necessary to develop novel, non-opioid-based treatments for OUD and decrease abuse potential of prescription opioids. Recent evidence suggests that negative allosteric modulation (NAM) of the M5 muscarinic acetylcholine receptor (M5 mAChR) may provide an alternative therapeutic approach for the treatment of OUD. Previous studies demonstrated localization of M5 mAChR expression within the mesocorticolimbic reward circuitry and that the selective M5 NAM ML375 attenuates both cocaine and alcohol self-administration in rats. In the present study, the effects of ML375 were evaluated in rats self-administering the µ-opioid agonists oxycodone or remifentanil on a progressive ratio (PR) schedule or on cue reactivity (a rodent model of relapse) in the absence of oxycodone following 72 h of abstinence. ML375 reduced the PR break point for oxycodone and remifentanil self-administration and attenuated cue-elicited responding. Importantly, ML375 did not affect sucrose pellet-maintained responding on a PR schedule or opioid-induced antinociception using the hot-plate and tail-flick assays. We also confirm expression of M5 mAChR mRNA in the ventral tegmental area and show that this is primarily on dopamine (tyrosine hydroxylase mRNA-positive) neurons. Taken together, these findings suggest that selective functional antagonism of the M5 mAChR may represent a novel, non-opioid-based treatment for OUD.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Entorpecentes/administração & dosagem , Nociceptividade/efeitos dos fármacos , Oxicodona/administração & dosagem , Receptor Muscarínico M5/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Masculino , Ratos , Ratos Sprague-Dawley , Remifentanil/administração & dosagem , Recompensa , Autoadministração
14.
Neuropharmacology ; 128: 492-502, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28729220

RESUMO

Although selective activation of the M1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic-like activity are not subject to the development of tolerance following repeated dosing with a selective M4 PAM in mice and further suggest that activation of M4 mAChRs may modulate both acquisition and consolidation of memory functions.


Assuntos
Antipsicóticos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Piridazinas/uso terapêutico , Receptor Muscarínico M4/genética , Tiofenos/uso terapêutico , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/metabolismo , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/toxicidade , Relação Dose-Resposta a Droga , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridazinas/metabolismo , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Tiofenos/metabolismo
15.
Addict Biol ; 23(5): 1106-1116, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29044937

RESUMO

Cocaine use disorder (CUD) remains a debilitating health problem in the United States for which there are no Food and Drug Administration-approved treatment options. Accumulating anatomical and electrophysiological evidence indicates that the muscarinic acetylcholine receptor (mAChR) subtype 5 (M5 ) plays a critical role in the regulation of the mesolimbic dopaminergic reward circuitry, a major site of action for cocaine and other psychostimulants. In addition, M5 knockout mice exhibit reduced cocaine self-administration behaviors with no differences in sugar pellet-maintained responding relative to wild-type mice. These findings suggest that selective inhibition of M5 mAChR may provide a novel pharmacological approach for targeting CUD. Recently, we reported the synthesis and characterization of ML375, a selective negative allosteric modulator (NAM) for the rat and human M5 mAChR with optimized pharmacokinetic properties for systemic dosing in rodents. In the present study, male Sprague-Dawley rats were trained to self-administer intravenous cocaine (0.1-0.75 mg/kg/infusion) under a 10-response fixed ratio or a progressive ratio schedule of reinforcement. Under both schedules of reinforcement, ML375 produced dose-related reductions in cocaine self-administration. ML375 also modestly reduced sugar pellet-maintained responding on the 10-response, fixed ratio schedule but had no effect under a progressive ratio schedule of reinforcement. Further, ML375 did not affect general motor output as assessed by a rotarod test. Collectively, these results provide the first demonstration that selective inhibition of M5 using the M5 NAM ML375 can attenuate both the reinforcing effects and the relative strength of cocaine and suggest that M5 NAMs may represent a promising, novel treatment approach for CUD.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/administração & dosagem , Receptor Muscarínico M5/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Recompensa , Autoadministração
16.
World J Surg Oncol ; 15(1): 168, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854949

RESUMO

BACKGROUND: Tumor embolisms (TE) are an underappreciated source of pulmonary embolisms in sarcoma. Most evidence in the literature is limited to case reports and none have described the presence of TE secondary to myxofibrosarcoma. We report the first case of myxofibrosarcoma TE and perform a review of the literature for TE secondary to bone and soft tissue sarcomas (STS). CASE PRESENTATION: A 36-year-old female presented with debilitating pain of the right upper extremity secondary to a recurrent soft tissue sarcoma. She had distant metastasis to the lung. An MRI revealed a 25-cm shoulder mass involving the proximal arm muscles with encasement of the axillary artery, vein, and brachial plexus. A palliative forequarter amputation was performed and tumor thrombus was evident within the axillary artery and vein. Postoperatively, she developed an acute onset of dyspnea and hypoxia. A computed tomography scan revealed a pulmonary saddle embolism. A bilateral lower extremity venous duplex was negative. She became hemodynamically unstable despite resuscitation and was placed on vasopressor support. A transthoracic echocardiogram revealed elevated pulmonary artery pressure, tricuspid regurgitation, right heart dilation, and reduced right heart systolic function consistent with acute cor pulmonale. The patient did not want to pursue a median sternotomy with pulmonary artery embolectomy and expired from cardiopulmonary arrest within 24 h of the operation. The final pathology revealed a 25 × 16 × 13 cm high-grade myxofibrosarcoma with invasion into the bone, skin, and neurovascular bundle as well as evidence of tumor thrombus. CONCLUSION: TE is a rare but deadly cause of pulmonary embolism in sarcoma. A high index of suspicion is necessary in individuals who present with respiratory-related symptoms, especially dyspnea. Diagnostic confirmation with a computed tomography scan of the chest and echocardiogram should be rapid. Unlike venous thromboembolism, pulmonary embolectomy remains the preferred therapeutic approach.


Assuntos
Fibrossarcoma/complicações , Neoplasias Pulmonares/complicações , Osteossarcoma/complicações , Embolia Pulmonar/diagnóstico , Neoplasias de Tecidos Moles/patologia , Adulto , Amputação Cirúrgica , Ecocardiografia , Evolução Fatal , Feminino , Fibrossarcoma/patologia , Fibrossarcoma/secundário , Fibrossarcoma/cirurgia , Parada Cardíaca/etiologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Imageamento por Ressonância Magnética , Células Neoplásicas Circulantes , Osteossarcoma/patologia , Osteossarcoma/secundário , Osteossarcoma/cirurgia , Prognóstico , Embolia Pulmonar/etiologia , Embolia Pulmonar/patologia , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/cirurgia , Tomografia Computadorizada por Raios X
17.
Neuropsychopharmacology ; 42(5): 1093-1102, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025974

RESUMO

Individual differences in response to social stress and environmental enrichment may contribute to variability in response to behavioral and pharmacological treatments for drug addiction. In monkeys, social status influences the reinforcing effects of cocaine and the effects of some drugs on cocaine self-administration. In this study, we used male cynomolgus macaques (n=15) living in established social groups to examine the effects of social confrontation on the reinforcing effects of cocaine using a food-drug choice procedure. On the test day, a dominant or subordinate monkey was removed from his homecage and placed into another social pen; 30 min later he was studied in a cocaine-food choice paradigm. For the group, following social confrontation, sensitivity to cocaine reinforcement was significantly greater in subordinate monkeys compared with dominant animals. Examining individual-subject data revealed that for the majority of monkeys (9/15), serving as an intruder in another social group affected cocaine self-administration and these effects were dependent on the social rank of the monkey. For subordinate monkeys, sensitivity to the reinforcing effects of cocaine increased while sensitivity decreased in dominant monkeys. To investigate potential mechanisms mediating these effects, brain glucose metabolism was studied in a subset of monkeys (n=8) using [18F]fluorodeoxyglucose ([18F]FDG) with positron emission tomography. Dominant and subordinate monkeys displayed distinctly different patterns of brain glucose metabolism in their homecage, including areas associated with vigilance and stress/anxiety, respectively, and during social confrontation. These data demonstrate that, depending on an individual's social status, the same social experience can have divergent effects on brain function and cocaine self-administration. These phenotypic differences in response to social conditions support a personalized treatment approach to cocaine addiction.


Assuntos
Encéfalo/diagnóstico por imagem , Cocaína/administração & dosagem , Hierarquia Social , Comportamento Social , Animais , Encéfalo/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucose/metabolismo , Macaca fascicularis , Masculino , Reforço Psicológico , Autoadministração
18.
ACS Chem Neurosci ; 7(12): 1706-1716, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27617634

RESUMO

Abnormalities in the signaling of the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) within cortical and limbic brain regions are thought to underlie many of the complex cognitive and affective symptoms observed in individuals with schizophrenia. The M1 muscarinic acetylcholine receptor (mAChR) subtype is a closely coupled signaling partner of the NMDAR. Accumulating evidence suggests that development of selective positive allosteric modulators (PAMs) of the M1 receptor represent an important treatment strategy for the potential normalization of disruptions in NMDAR signaling in patients with schizophrenia. In the present studies, we evaluated the effects of the novel and highly potent M1 PAM, VU6004256, in ameliorating selective prefrontal cortical (PFC)-mediated physiologic and cognitive abnormalities in a genetic mouse model of global reduction in the NR1 subunit of the NMDAR (NR1 knockdown [KD]). Using slice-based extracellular field potential recordings, deficits in muscarinic agonist-induced long-term depression (LTD) in layer V of the PFC in the NR1 KD mice were normalized with bath application of VU6004256. Systemic administration of VU6004256 also reduced excessive pyramidal neuron firing in layer V PFC neurons in awake, freely moving NR1 KD mice. Moreover, selective potentiation of M1 by VU6004256 reversed the performance impairments of NR1 KD mice observed in two preclinical models of PFC-mediated learning, specifically the novel object recognition and cue-mediated fear conditioning tasks. VU6004256 also produced a robust, dose-dependent reduction in the hyperlocomotor activity of NR1 KD mice. Taken together, the current findings provide further support for M1 PAMs as a novel therapeutic approach for the PFC-mediated impairments in schizophrenia.


Assuntos
Colinérgicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas do Tecido Nervoso/deficiência , Nootrópicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Colinérgicos/farmacocinética , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Medo/efeitos dos fármacos , Medo/fisiologia , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Nootrópicos/farmacocinética , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Técnicas de Cultura de Tecidos
19.
Neuropharmacology ; 102: 244-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26617071

RESUMO

Accumulating evidence indicates direct relationships between sleep abnormalities and the severity and prevalence of other symptom clusters in schizophrenia. Assessment of potential state-dependent alterations in sleep architecture and arousal relative to antipsychotic-like activity is critical for the development of novel antipsychotic drugs (APDs). Recently, we reported that VU0467154, a selective positive allosteric modulator (PAM) of the M4 muscarinic acetylcholine receptor (mAChR), exhibits robust APD-like and cognitive enhancing activity in rodents. However, the state-dependent effects of VU0467154 on sleep architecture and arousal have not been examined. Using polysomnography and quantitative electroencephalographic recordings from subcranial electrodes in rats, we evaluated the effects of VU0467154, in comparison with the atypical APD clozapine and the M1/M4-preferring mAChR agonist xanomeline. VU0467154 induced state-dependent alterations in sleep architecture and arousal including delayed Rapid Eye Movement (REM) sleep onset, increased cumulative duration of total and Non-Rapid Eye Movement (NREM) sleep, and increased arousal during waking periods. Clozapine decreased arousal during wake, increased cumulative NREM, and decreased REM sleep. In contrast, xanomeline increased time awake and arousal during wake, but reduced slow wave activity during NREM sleep. Additionally, in combination with the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) antagonist MK-801, modeling NMDAR hypofunction thought to underlie many symptoms in schizophrenia, both VU0467154 and clozapine attenuated MK-801-induced elevations in high frequency gamma power consistent with an APD-like mechanism of action. These findings suggest that selective M4 PAMs may represent a novel mechanism for treating multiple symptoms of schizophrenia, including disruptions in sleep architecture without a sedative profile.


Assuntos
Piridazinas/farmacologia , Receptor Muscarínico M4/agonistas , Sono/efeitos dos fármacos , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Nível de Alerta/efeitos dos fármacos , Eletroencefalografia , Masculino , Polissonografia , Ratos
20.
Neuropsychopharmacology ; 41(4): 1166-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26315507

RESUMO

Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.


Assuntos
Alcinos/administração & dosagem , Alcinos/farmacologia , Alcinos/farmacocinética , Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Piridinas/administração & dosagem , Piridinas/farmacologia , Piridinas/farmacocinética , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Animais , Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Fenciclidina/administração & dosagem , Ratos Sprague-Dawley , Autoadministração , Tiazóis/administração & dosagem , Tiazóis/farmacocinética , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...