Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(19): 6387-6392, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30998022

RESUMO

Raman microspectroscopy was employed in this work to study the degradation of a polyanhydride network polymer synthesized from 4-pentenoic anhydride and pentaerythritol tetrakis(3-mercaptopropionate) monomers in order to illustrate the utility of this method and improve the understanding of the polyanhydride degradation and erosion. Disk-shaped polymer samples were immersed in buffer solutions for different periods of time, and hydrolytic degradation was monitored spatially and temporally via kinetic Raman studies at various depths of penetration into the samples. Erosion, meanwhile, was monitored via mass loss measurements. Dispersive Raman microspectroscopy is shown to be a particularly valuable tool for the study of the hydrolytic degradation of these materials. It confirms that these thiol-ene polyanhydrides are indeed surface eroding, while also revealing that degradation starts to occur at the core of samples on a short time scale (less than 5 h). At any given degradation time, there is a concentration gradient of the unreacted anhydride, with the unreacted anhydride concentration increasing from the outer edge to the center of the polymer samples. Further, the anhydride functionality is found to decrease approximately linearly with degradation time at all depths in the samples, though the degradation rate does appear to increase slightly as degradation occurs.

2.
Langmuir ; 28(5): 2909-13, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22283327

RESUMO

The facile phase-transfer of large, water-soluble metal nanoparticles to nonpolar solvent is reported here. Thiol-terminated polystyrene (PS-SH) is ligand-exchanged onto water-soluble metal nanoparticles in single-phase acetone/water mixtures, generating a precipitate. The solvent is then removed and the particles are redissolved in nonpolar solvent. This approach is demonstrated for nanoparticles of different metal (Au and Ag), size (3 to >100 nm), shape (spheres, rods, and wires, etc.), and leaving ligand (citrate, cetyltrimethylammonium bromide, poly(vinylpyrrolidone), and 4-dimethylaminopyridine. The resulting PS-SH-stabilized nanoparticles maintain their initial size and shape, and are highly stable. They are soluble in various organic solvents (toluene, benzene, chloroform, dichloromethane, and tetrahydrofuran), and can be readily dried, purified, and re-dissolved. This method makes possible the utilization of a full range of existing nanoparticle cores in nonpolar solvents with a single ligand. It provides access to numerous nanomaterials that cannot be obtained through direct synthesis in nonpolar solvent, and is expected to be of significant value in a number of applications.

3.
J Am Chem Soc ; 132(28): 9582-4, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20568767

RESUMO

A revised view of Brust-Schiffrin metal nanoparticle syntheses is presented here. Precursor species of these reactions are identified and quantified for Au, Ag, and Cu systems. Contrary to the assumptions of previous reports, tetraalkylammonium metal complexes are shown to be precursors of the two-phase reactions, whereas M(I) thiolates are shown to be precursors of the one-phase reactions. A new scheme is outlined for the two-phase synthesis, and the implications of this scheme are discussed. A new synthetic strategy employing well-defined precursors is also introduced. Finally, M(I) thiolate formation, and its impact on nanoparticle synthesis, is discussed. It is expected that the results presented here will lead to modifications in the manner in which these important syntheses are conducted.

4.
Anal Chem ; 79(7): 2728-34, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17311464

RESUMO

Here, it is demonstrated that similar chemical species within a multicomponent sample can be distinguished, down to the single-molecule level, by means of their surface-enhanced vibrational fingerprints. Surface-enhanced resonance Raman scattering spectra and 2D spatial intensity maps are recorded from thin Ag nanoparticle films coated with fatty acid Langmuir-Blodgett monolayers containing one-to-one binary mixtures, at varying concentrations, of two dye molecules of similar absorption and scattering cross section (n-pentyl-5-salicylimidoperylene and octadecylrhodamine B). The results reveal the change in the distribution of the two dyes within the monolayer, and the breakdown of ensemble spectral averaging, which occur as the single-molecule regime is approached. It is found that the unimolecular level is reached when 1-10 molecules of each dye occupy the 1-microm2 scattering areas probed by the laser. These signals are attributed to the rare spatial coincidence of isolated target analyte molecules and localized electromagnetic hot spots in the nanostructured metal film. The bianalyte nature of the samples provides strong corroborative support for the attribution of spectra to single molecules at high dilution, while the effect of domain formation/aggregation is found to be important at higher concentrations.


Assuntos
Membranas Artificiais , Análise Espectral Raman/métodos , Corantes/química , Corantes/efeitos da radiação , Ácidos Graxos/química , Luz , Microscopia de Força Atômica/métodos , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Padrões de Referência , Sensibilidade e Especificidade , Prata/química , Análise Espectral Raman/normas , Propriedades de Superfície , Vibração
5.
J Am Chem Soc ; 128(39): 12626-7, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17002338

RESUMO

In this work, the fabrication, characterization, and application of avidin/Ag nanoparticle layer-by-layer (LbL) films as chemically selective substrates for surface-enhanced resonance Raman scattering (SERRS) is demonstrated. The biospecific interaction between avidin and the small molecule biotin, one of the strongest known to exist in nature, is exploited to preferentially capture biotinylated species from solution. This highly favored adsorption is shown to yield SERRS concentration enhancements and improved detection sensitivities of ca. 102 for commercially available and in situ prepared biotinylated species over their nontagged counterparts.


Assuntos
Avidina/química , Nanopartículas/química , Prata/química , Análise Espectral Raman/métodos , Biotina/química , Coloides/química , Microscopia de Força Atômica , Modelos Moleculares , Ressonância de Plasmônio de Superfície/métodos
6.
Langmuir ; 21(12): 5576-81, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15924492

RESUMO

In this paper, the fabrication, characterization, and application of unique layer-by-layer (LBL) films of dendrimers and metallic nanoparticles is reported. Silver nanoparticles (d = approximately 20 nm) are produced in solution by sodium citrate reduction and incorporated into thin films with generation 1 and 5 DAB-Am dendrimers (polypropylenimine dendrimers with amino surface groups) by the LBL technique. The resulting nanocomposite films are characterized by UV-visible surface plasmon absorption and atomic force microscopy (AFM) measurements, and employed as substrates for surface-enhanced Raman scattering (SERS) of 2-naphthalenethiol. Through variation of the molecular size (dendrimer generation) and concentration of the cross-linker used, as well as the number of layers produced, the optical properties of several different possible architectures are studied. In the films, Ag nanoparticles are shown to be effectively immobilized and stabilized with increased control over their spacing and aggregation. Moreover, the films are shown to be excellent substrates for SERS measurements, demonstrating significant enhancement capability. As expected, large electromagnetic enhancement of Raman scattering signals is found to be strongly dependent on interparticle coupling between neighboring metallic nanoparticles. Finally, the possibility of detecting SERS signals from architectures with intervening layers between the metal nanoparticles and analyte molecules is explored. It is shown that although there are decreases in intensity with increasing number of intervening layers (as is expected from the distance dependence of SERS), electromagnetic enhancement is still able to function at these distances, thus offering the possibility of developing sensors with external layers that are chemically selective for specific analytes.

7.
Anal Chem ; 77(2): 378-82, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15649031

RESUMO

In this paper, the fabrication of highly stable, surface-enhanced Raman scattering (SERS) active dendrimer/silver nanowire layer-by-layer (LBL) films is reported. Ag nanowires, approximately 100 nm in diameter, were produced in solution and transferred, using the LBL technique, onto a single fifth-generation DAB-Am dendrimer layer on a glass substrate. The Ag nanowires, and the resulting LBL films were characterized using UV-visible surface plasmon absorbance, while the LBL films were further characterized by atomic force microscopy measurements and surface-enhanced Raman and resonance Raman scattering of several analytes. The dendrimer was found to effectively immobilize the Ag nanowires with increased control over spacing and aggregation of the particles. These films are shown to be excellent substrates for SERS/SERRS measurements, demonstrating significant enhancement, and trace detection capability. Several trial analytes were tested using a variety of excitation energies, and results confirmed effective enhancement of Raman signals throughout the visible range (442-785 nm) with different molecules. Analytes were deposited onto the enhancing Ag nanowire LBL films surface using both casting and Langmuir-Blodgett monolayer transferring techniques.


Assuntos
Nanofios , Prata , Análise Espectral Raman/métodos , Dendrímeros , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
8.
J Phys Chem B ; 109(9): 3787-92, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16851426

RESUMO

In this work, the role of nanoparticle surface charge in surface-enhanced Raman scattering (SERS) is examined for the common case of measurements made in colloidal solutions of Ag and Au. Average SERS intensities obtained for several analytes (salicylic acid, pyridine, and 2-naphthalenethiol) on Ag and Au colloids are correlated with the pH and zeta potential (zeta) values of the nanoparticle solutions from which they were recorded. The consequence of the electrostatic interaction between the analyte and the metallic nanoparticle is stressed. The zeta potentials of three commonly used colloidal solutions are reported as a function of pH, and a discussion is given on how these influence SERS intensity. Also examined is the importance of nanoparticle aggregation (and colloidal solution collapse) in determining SERS intensities, and how this varies with the pH of the solution. The results show that SERS enhancement is highest at zeta potential values where the colloidal nanoparticle solutions are most stable and where the electrostatic repulsion between the particles and the analyte molecules is minimized. These results suggest some important criteria for consideration in all SERS measurements and also provide important insights into the problem of predicting SERS activities for different molecular systems.

9.
Langmuir ; 20(23): 10273-7, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15518524

RESUMO

In this work, self-sustained, biocompatible, biodegradable films containing gold nanostructures have been fabricated for potential application in nanobioscience and ultrasensitive chemical and biochemical analysis. We report a novel synthesis of gold nanoparticles mediated by the biopolymer chitosan. Self-supporting thin films are formed from the resultant gold-chitosan nanocomposite solutions and characterized by UV-visible surface plasmon absorption, transmission electron microscopy, atomic force microscopy, infrared absorption, and Raman scattering measurements. Results demonstrate control over the size and distribution of the nanoparticles produced, which is promising for several applications, including the development of biosensors. As a proof of principle, we demonstrate that gold-chitosan films can be employed in trace analysis using surface-enhanced Raman scattering.


Assuntos
Quitosana/química , Ouro , Materiais Biocompatíveis/química , Técnicas In Vitro , Microscopia Eletrônica , Nanoestruturas , Nanotecnologia , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
10.
Anal Chem ; 75(8): 1918-23, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12713051

RESUMO

The observation of overtones and combinations in the SERRS spectra of single molecules dispersed in Langmuir-Blodgett monolayers is confirmed for a family of molecules. The detection of fundamentals, combinations, and overtones in single-molecule spectra of a series of perylenetetracarboxylic diimides (PTCD) is achieved with spatially resolved surface-enhanced resonance Raman scattering (SERRS). The Langmuir-Blodgett technique is used to create monomolecular thick films on metal islands containing on average one probed molecule within the field of view of the Raman microscope. The enhancement needed for single-molecule detection is achieved through the multiplicative effects of electromagnetic enhancement by metal nanostructures and resonance Raman enhancement by excitation into molecular electronic absorption bands. Overtone and combination progressions are well resolved in the average SERRS spectra of all three PTCD molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA