Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228369

RESUMO

Chemokine signalling performs key functions in cell migration via chemoattraction, such as attracting leukocytes to the site of infection during host defence. The system consists of a ligand, the chemokine, usually secreted outside the cell, and a chemokine receptor on the surface of a target cell that recognises the ligand. Several noncanonical components interact with the system. These include a variety of molecules that usually share some degree of sequence similarity with canonical components and, in some cases, are known to bind to canonical components and/or to modulate cell migration. Whereas canonical components have been described in vertebrate lineages, the distribution of the noncanonical components is less clear. Uncertainty over the relationships between canonical and noncanonical components hampers our understanding of the evolution of the system. We used phylogenetic methods, including gene-tree to species-tree reconciliation, to untangle the relationships between canonical and noncanonical components, identify gene duplication events, and clarify the origin of the system. We found that unrelated ligand groups independently evolved chemokine-like functions. We found noncanonical ligands outside vertebrates, such as TAFA "chemokines" found in urochordates. In contrast, all receptor groups are vertebrate-specific and all-except ACKR1-originated from a common ancestor in early vertebrates. Both ligand and receptor copy numbers expanded through gene duplication events at the base of jawed vertebrates, with subsequent waves of innovation occurring in bony fish and mammals.


Assuntos
Mamíferos , Vertebrados , Animais , Filogenia , Ligantes , Vertebrados/genética , Mamíferos/genética , Quimiocinas/genética
2.
Nat Commun ; 14(1): 3284, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280201

RESUMO

Monoamines like serotonin, dopamine, and adrenaline/noradrenaline (epinephrine/norepinephrine) act as neuromodulators in the nervous system. They play a role in complex behaviours, cognitive functions such as learning and memory formation, as well as fundamental homeostatic processes such as sleep and feeding. However, the evolutionary origin of the genes required for monoaminergic modulation is uncertain. Using a phylogenomic approach, in this study, we show that most of the genes involved in monoamine production, modulation, and reception originated in the bilaterian stem group. This suggests that the monoaminergic system is a bilaterian novelty and that its evolution may have contributed to the Cambrian diversification.


Assuntos
Dopamina , Norepinefrina , Norepinefrina/fisiologia , Dopamina/fisiologia , Epinefrina , Serotonina/fisiologia , Catecolaminas
3.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34270718

RESUMO

Diptera is one of the biggest insect orders and displays a large diversity of visual adaptations. Similarly to other animals, the dipteran visual process is mediated by opsin genes. Although the diversity and function of these genes are well studied in key model species, a comprehensive comparative genomic study across the dipteran phylogeny is missing. Here we mined the genomes of 61 dipteran species, reconstructed the evolutionary affinities of 528 opsin genes, and determined the selective pressure acting in different species. We found that opsins underwent several lineage-specific events, including an independent expansion of Long Wave Sensitive opsins in flies and mosquitoes, and numerous family-specific duplications and losses. Both the Drosophila and the Anopheles complement are derived in comparison with the ancestral dipteran state. Molecular evolutionary studies suggest that gene turnover rate, overall mutation rate, and site-specific selective pressure are higher in Anopheles than in Drosophila. Overall, our findings indicate an extremely variable pattern of opsin evolution in dipterans, showcasing how two similarly aged radiations, Anopheles and Drosophila, are characterized by contrasting dynamics in the evolution of this gene family. These results provide a foundation for future studies on the dipteran visual system.


Assuntos
Anopheles , Dípteros , Animais , Anopheles/genética , Drosophila/genética , Evolução Molecular , Opsinas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA