Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(11): 3801-3815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074382

RESUMO

The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.


Assuntos
Bacteriófagos , Solanum lycopersicum , Pseudomonas syringae , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Plantas
3.
Plant Dis ; 105(11): 3623-3635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34003032

RESUMO

In November 2019, a severe outbreak of fruit rot was observed in olive orchards in Crete, southern Greece. Symptoms appeared primarily on fruits and stalks, resembling those caused by anthracnose. Typical symptoms were fruit rot, shrinkage, and mummification, associated commonly with stalk discoloration and fruit drop. Disease incidence was estimated at up to 100% in some cases, and an unprecedented increase in olive oil acidity reaching up to 8% (percentage of oleic acid) in severely affected olive groves was recorded. Thirty-two olive groves were then surveyed, and samples of fruit, stalk, leaf, and shoot were collected. Visual, stereoscopic, and microscopic observations revealed several fungi belonging to the genera Alternaria, Botryosphaeria, Capnodium, Colletotrichum, Fusarium, and Pseudocercospora. Fungal infection in fruits was commonly associated with concomitant infestation by the olive fruit fly Bactrocera oleae along with increased air temperature and relative humidity conditions that prevailed in October and November 2019. Twenty representative fungal strains isolated from symptomatic fruits and stalks were characterized by morphological, physiological, and molecular analyses. By internal transcribed spacer regions of ribosomal DNA region and translation elongation factor 1-α gene sequencing analysis, these isolates were identified as Alternaria spp., A. infectoria, Botryosphaeria dothidea, Colletotrichum boninense sensu lato, Fusarium lateritium, F. solani species complex and Stemphylium amaranthi. Pathogenicity tests on punctured fruits revealed that all isolates were pathogenic; however, F. solani isolates along with B. dothidea were the most virulent, and wounds were necessary for efficient fungal infection. Moreover, as few as 10 spores of F. solani were sufficient to cause significant infection in punctured fruits. F. solani was also capable of infecting olive fruits in the presence of B. oleae, with no additional wounding, in artificial inoculation experiments. Moreover, it was capable of colonizing and affecting olive blossoms. Further analyses of olive oil extracted from fruits artificially inoculated with F. solani indicated a significant increase in oil acidity, K232, K270, and peroxide value, whereas total phenol content was significantly decreased. To the best of our knowledge, this is the first report of F. solani associated with olive fruit rot and olive oil degradation worldwide.


Assuntos
Colletotrichum , Olea , Colletotrichum/genética , Grécia , Azeite de Oliva , Doenças das Plantas
4.
Plant Dis ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33719539

RESUMO

Almond (Prunus dulcis) is an important crop for Greece grown on 15.130 ha in 2019. In September 2019, a severe stem canker disease was observed in 6-year-old trees of cv Marta grafted on the rootstock 'F675C14', in a new almond grove of cvs Marta, Soleta, Antonela, Belona and Laurete, in Vlachiana, Heraklion, Crete, Greece. Only cv Marta trees were affected. Diseased trees exhibited cankers on trunks and branches with pale yellow to red-colored gum excreting from cankers, yellowing, leaf fall, twig and branch dieback, bark and wood tissue discoloration. Severely affected trees were killed. A Fusarium-like fungus was consistently isolated from symptomatic wood tissue previously surface-disinfested with 95% ethanol, on acidified potato dextrose agar (APDA). Emerging colonies were transferred to new PDA and the growth rate of the fungus was 7.86 mm/day at 24 °C in the dark. The abundant aerial mycelium was initially white, turning into pale orange in the centre after 7 days of growth on PDA. Microscopic observations revealed hyaline conidiophores measuring 26.74 ± 20.44 µm in length, developing microconidia 5.00 to 9.50 × 2.50 to 4.75 µm (average 6.64 × 3.50 µm) and macroconidia 10.00 to 23.25 × 3.75 to 5.50 µm (average 16.42 × 4.50 µm) in size. DNA from one representative single-spore isolate (code KOUB.AM.VR1) was extracted and the internal transcribed spacer region (ITS) of ribosomal DNA and translation elongation factor 1-alpha (EF 1-a) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990) and EF1-F/EF2-R (O'Donnell et al. 1998), respectively. The PCR products were sequenced and deposited in GenBank (accession Nos. MW547397 and MW554492). Based on morphological characteristics (Leslie and Summerell 2006) and a BLAST search with 100.00% and 99.38% identity to published F. solani ITS and EF 1-a sequences in GenBank (KX034335.1, DQ247636.1) the fungus was identified as F. solani. Eight 3-year-old almond trees of cv. Marta were artificially inoculated in March 2020 by making a 6.0-mm-diameter hole into the trunk, inserting a 6-mm-diameter mycelial disc taken from a 10-day-old PDA culture, sealing the hole with cellophane membrane and covering with adhesive paper tape. Another eight trees of the same cultivar were mock-inoculated with sterilized PDA discs and served as controls. Potted trees were kept under ambient conditions. One month post inoculation, yellow gum was evident excreting around the inoculation point in F. solani-treated trees but not in the controls. Seven months post inoculation, longitudinal and transverse sections of inoculated trunks revealed internal and external symptoms similar to those observed under natural infection conditions and F. solani was steadily re-isolated from symptomatic wood tissue and identified by colony morphology. Neither symptoms nor positive isolations were observed in control trunks. Pathogenicity tests were repeated twice. Fusarium solani has been reported as the causal agent of stem canker or wood decay diseases in several woody hosts including bitternut hickory, black walnut, mulberry and pistachio trees (Crespo et al. 2019; Markakis et al. 2017; Park and Juzwik 2012; Tisserat 1987). To the best of our knowledge, this is the first worldwide report of stem canker caused by F. solani on almond tree. This disease could potentially be an increasing problem in almond growing areas and result in severe crop losses. Hence, effective management practices should be investigated and applied.

5.
Front Microbiol ; 6: 811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300874

RESUMO

The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

6.
PLoS One ; 8(3): e59366, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555661

RESUMO

Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Pseudomonas/genética , Avena/microbiologia , Proteínas de Bactérias/classificação , Bromus/microbiologia , Mapeamento Cromossômico , Ilhas Genômicas , Especificidade de Hospedeiro , Solanum lycopersicum/microbiologia , Família Multigênica , Filogenia , Pseudomonas/classificação , Pseudomonas/patogenicidade , Pseudomonas aeruginosa/genética , Pseudomonas syringae/genética , Análise de Sequência de DNA , Especificidade da Espécie
7.
PLoS One ; 7(4): e36090, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558343

RESUMO

The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.


Assuntos
Variação Genética , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Plantas/microbiologia , Pseudomonas/genética , Sequência de Bases , Impressões Digitais de DNA , Eletroforese em Gel de Ágar , Genes Bacterianos/genética , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Pseudomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...