Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 324(3): F245-F255, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36546838

RESUMO

Mammalian nephrons arise from a population of nephron progenitor cells (NPCs) expressing the master transcription factor Wilms tumor-1 (WT1), which is crucial for NPC proliferation, migration, and differentiation. In humans, biallelic loss of WT1 precludes nephrogenesis and leads to the formation of Wilms tumor precursor lesions. We hypothesize that WT1 normally primes the NPC for nephrogenesis by inducing expression of NPC-specific DNA repair genes that protect the genome. We analyzed transcript levels for a panel of DNA repair genes in embryonic day 17.5 (E17.5) versus adult mouse kidneys and noted seven genes that were increased >20-fold. We then isolated Cited1+ NPCs from E17.5 kidneys and found that only one gene, nei-like DNA glycosylase 3 (Neil3), was enriched. RNAscope in situ hybridization of E17.5 mouse kidneys showed increased Neil3 expression in the nephrogenic zone versus mature nephron structures. To determine whether Neil3 expression is WT1 dependent, we knocked down Wt1 in Cited1+ NPCs (60% knockdown efficiency) and noted a 58% reduction in Neil3 transcript levels. We showed that WT1 interacts with the Neil3 promoter and that activity of a Neil3 promoter-reporter vector was increased twofold in WT1+ versus WT1- cells. We propose that Neil3 is a WT1-dependent DNA repair gene expressed at high levels in Cited1+ NPCs, where it repairs mutational injury to the genome during nephrogenesis. NEIL3 is likely just one of many such lineage-specific repair mechanisms that respond to genomic injury during kidney development.NEW & NOTEWORTHY We studied the molecular events leading to Wilms tumors as a model for the repair of genomic injury. Specifically, we showed that WT1 activates DNA repair gene Neil3 in nephron progenitor cells. However, our observations offer a much broader principle, demonstrating that the embryonic kidney invests in lineage-specific expression of DNA repair enzymes. Thus, it is conceivable that failure of these mechanisms could lead to a variety of "sporadic" congenital renal malformations and human disease.


Assuntos
Neoplasias Renais , Tumor de Wilms , Animais , Humanos , Camundongos , Rim/metabolismo , Neoplasias Renais/patologia , Mamíferos/metabolismo , Néfrons/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia , Proteínas WT1/genética , Proteínas WT1/metabolismo
2.
BMB Rep ; 52(1): 86-108, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526773

RESUMO

In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].


Assuntos
Envelhecimento/genética , Longevidade/genética , Transcriptoma/genética , Animais , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Homeostase , Humanos , Fenótipo , RNA não Traduzido/genética , RNA não Traduzido/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA