Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(8): 6119-6143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626917

RESUMO

Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.


Assuntos
Transportador 2 de Aminoácido Excitatório , Relação Estrutura-Atividade , Regulação Alostérica/efeitos dos fármacos , Humanos , Transportador 2 de Aminoácido Excitatório/metabolismo , Células HEK293 , Animais , Estrutura Molecular
2.
ACS Chem Biol ; 19(2): 233-242, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38271588

RESUMO

In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.


Assuntos
Proteínas de Transporte , Purificação por Afinidade em Tandem , Purificação por Afinidade em Tandem/métodos , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas/metabolismo , Cromatografia de Afinidade/métodos
3.
Cancer Discov ; 13(5): 1210-1229, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734633

RESUMO

Triple-negative breast cancers (TNBC) frequently inactivate p53, increasing their aggressiveness and therapy resistance. We identified an unexpected protein vulnerability in p53-inactivated TNBC and designed a new PROteolysis TArgeting Chimera (PROTAC) to target it. Our PROTAC selectively targets MDM2 for proteasome-mediated degradation with high-affinity binding and VHL recruitment. MDM2 loss in p53 mutant/deleted TNBC cells in two-dimensional/three-dimensional culture and TNBC patient explants, including relapsed tumors, causes apoptosis while sparing normal cells. Our MDM2-PROTAC is stable in vivo, and treatment of TNBC xenograft-bearing mice demonstrates tumor on-target efficacy with no toxicity to normal cells, significantly extending survival. Transcriptomic analyses revealed upregulation of p53 family target genes. Investigations showed activation and a required role for TAp73 to mediate MDM2-PROTAC-induced apoptosis. Our data, challenging the current MDM2/p53 paradigm, show MDM2 is required for p53-inactivated TNBC cell survival, and PROTAC-targeted MDM2 degradation is an innovative potential therapeutic strategy for TNBC and superior to existing MDM2 inhibitors. SIGNIFICANCE: p53-inactivated TNBC is an aggressive, therapy-resistant, and lethal breast cancer subtype. We designed a new compound targeting an unexpected vulnerability we identified in TNBC. Our MDM2-targeted degrader kills p53-inactivated TNBC cells, highlighting the requirement for MDM2 in TNBC cell survival and as a new therapeutic target for this disease. See related commentary by Peuget and Selivanova, p. 1043. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Quimera de Direcionamento de Proteólise , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/fisiopatologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia , Quimera de Direcionamento de Proteólise/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Análise de Sobrevida , Apoptose/efeitos dos fármacos , Proteína Tumoral p73/metabolismo , Xenoenxertos , Proteólise/efeitos dos fármacos , Feminino
4.
Chem Asian J ; 17(8): e202200041, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35191612

RESUMO

A novel protocol is developed towards the preparation of alkylated ketones from alcohols in presence of catalytic amount of SmI2 and base with the elimination of water as a single by-product under microwave irradiation conditions. Furthermore, applicability of this methodology to the synthesis of Donepezil and late-stage functionalization in Pregnenolone is also reported. Successful application of this methodology in Friedländer quinolone synthesis using 2-aminobenzyl alcohol and various acetophenones expand the synthetic utility of this protocol.


Assuntos
Álcoois , Cetonas , Alquilação , Iodetos , Micro-Ondas , Samário
5.
Bioorg Chem ; 105: 104447, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33207276

RESUMO

A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer. The cellular architecture was affected by inhibition of tubulin polymerization as observed by an immunofluorescence assay on 9a-treated SCC-29B cells. An in vitro tubulin polymerization kinetics assay provided evidence of direct interaction of 9a with tubulin. This physical interaction between tubulin and compound 9a was further confirmed by Surface Plasmon Resonance (SPR) analysis. Molecular docking experiments and validations revealed that compound 9a interacts and binds at the colchicine binding site of tubulin and at active sites of key enzymes in the glucose metabolism pathway. Based on in silico modeling, biophysical interactions, and pre-clinical observations, 9a consisting of phenstatin based indole-chalcone scaffolds, can be considered as an attractive tubulin polymerization inhibitor candidate for developing anti-cancer therapeutics.


Assuntos
Antineoplásicos/síntese química , Benzofenonas/química , Chalcona/síntese química , Indóis/química , Neoplasias Bucais/tratamento farmacológico , Moduladores de Tubulina/síntese química , Animais , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Colchicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
6.
RSC Adv ; 10(71): 43533-43538, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519697

RESUMO

A facile method was developed for the synthesis of quinazolinone derivatives in a one-pot condensation reaction via in situ amine generation using ammonia as the amine source and with the formation of four new C-N bonds in good to excellent yields. With the optimised method, we synthesized a library of piperazine linked quinazoline derivatives and the synthesized compounds were evaluated for their inhibitory activity against Mycobacterium tuberculosis. The compounds 8b, 8e, 8f, 8m, 8n and 8v showed potent anti-mycobacterial activity with MIC values of 2-16 µg mL-1. All the synthesized compounds follow Lipinski's rules for drug likeness.

7.
Bioorg Chem ; 93: 103306, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586710

RESUMO

A facile synthetic strategy has been developed for the generation of structurally diverse N-fused heterocycles. The formation of fused 1,2,3-triazole indolo and pyrrolodiazepines proceeds through an initial Knoevenagel condensation followed by intramolecular azide-alkyne cycloaddition reaction at room temperature without recourse to the traditional Cu(I)-catalyzed azide-alkyne cycloadditions. The synthesized compounds were evaluated for their in vitro anti-cancer activity against the NCI 60 cell line panel. Among the tested compounds, 3a and 3h were found to exhibit potent inhibitory activity against many of the cell lines. Cell cycle analysis indicated that the compounds inhibit the cell cycle at sub G1 phase. The DNA- nano drop method, viscosity experiment and docking studies suggested these compounds possess DNA binding affinity.


Assuntos
Antineoplásicos/síntese química , Azepinas/química , DNA/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/metabolismo , Azepinas/farmacologia , Sítios de Ligação , Catálise , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre/química , Reação de Cicloadição , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Pirróis/química , Triazóis/química
8.
Org Biomol Chem ; 17(35): 8153-8165, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460554

RESUMO

A general and catalyst-free access to the fused polycyclic N-heterocycles via an intramolecular azide-alkene cascade reaction under mild reaction conditions has been developed. The reaction is applicable to both indole and pyrrole substrates, and a variety of substituents are tolerated. The entire sequence can be carried out in a one-pot operation. This methodology provides a sustainable and efficient access to a variety of novel polycyclic indole/pyrrole substituted-1,2,3-triazoles.

9.
Bioorg Med Chem ; 27(17): 3760-3774, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324564

RESUMO

Multi-drug resistant Staphylococcus aureus infections have created a critical need for the development of new classes of antibacterials. Discovery of new naturally derived antibacterial agents with new mechanism of action remains a high priority globally. Several of the available antibacterial agents like ß-lactams, polyketides, phenylpropanoids, aminoglycosides, macrolides, glycopeptides, streptogramins and lipopeptides are natural products or their semisynthetic variations. In the current scenario of alarming rise in antibacterial resistance, revisiting natural products with modern chemistry and biology tools has fascinated many medicinal chemists for discovery and development of natural products or derived semisynthetic derivatives as effective antibacterial agents. This review underlines the structures and anti-MRSA activity of various natural product derivatives covering recent reports, in vivo activities and brief Structure Activity Relationships (SARs).


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Org Chem ; 84(11): 7488-7494, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066282

RESUMO

A new protocol for the alkylation of aromatic amines has been described using alcohols in the presence of SmI2 as a catalyst with the generation of water as the sole byproduct. The reaction proceeds under MW conditions and selectively generates monoalkylated amines. This protocol features a broad substrate scope and good functional-group tolerance with moderate to high yields.

11.
Eur J Med Chem ; 175: 287-308, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096152

RESUMO

Staphylococcus aureus and Mycobacterium tuberculosis are major causative agents responsible for serious nosocomial and community-acquired infections impacting healthcare systems globally. Over several decades, these pathogens have developed resistance to multiple antibiotics significantly affecting morbidity and mortality. Thus, these recalcitrant pathogens are amongst the most formidable microbial pathogens for which international healthcare agencies have mandated active identification and development of new antibacterial agents for chemotherapeutic intervention. In our present work, a series of new quinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP pathogens and pathogenic mycobacteria. The experiments revealed that 4'c, 4'e, 4'f and 4'h displayed selective and potent inhibitory activity against Staphylococcus aureus with MIC values ranging from 0.03-0.25 µg/mL. Furthermore, compounds 4'c and 4'e were found to be benign to Vero cells (CC50 = >5 µg/mL) and displayed promising selectivity index (SI) > 167 and > 83.4 respectively. Additionally, 4'c and 4'e demonstrated equipotent MIC against multiple drug-resistant strains of S. aureus including VRSA, concentration dependent bactericidal activity against S. aureus and synergized with FDA approved drugs. Moreover, compound 4'c exhibited more potent activity in reducing the biofilm and exhibited a PAE of ∼2 h at 10X MIC which is comparable to levofloxacin and vancomycin. In vivo efficacy of 4'c in murine neutropenic thigh infection model revealed that 4'c caused a similar reduction in cfu as vancomycin. Gratifyingly, compounds 4d, 4e, 9a, 9b, 14a, 4'e and 4'f also exhibited anti-mycobacterial activity with MIC values in the range of 2-16 µg/mL. In addition, the compounds were found to be less toxic to Vero cells (CC50 = 12.5->100 µg/mL), thus displaying a favourable selectivity index. The interesting results obtained here suggest the potential utilization of these new quinazolin-4(3H)-one derivatives as promising antibacterial agents for treating MDR-Staphylococcal and mycobacterial infections.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Animais , Antibacterianos/química , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Quinazolinonas/química , Relação Estrutura-Atividade , Células Vero
12.
Bioorg Chem ; 83: 569-579, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30471579

RESUMO

Treatment of nosocomial and community acquired Staphylococcus aureus infections has become more challenging due to the egression of multi-drug resistance. This has spurred the need for rapid development of new therapeutic agents which can effectively negate the resistance mechanisms. In our current work, several new 4-oxoquinazolin-3(4H)-yl)benzoic acid and benzamide derivatives were synthesized and examined for their antimicrobial activity against ESKAP pathogen panel and pathogenic mycobacteria. In the primary screening, compounds 4a, 4b, 6'a, 6'b, 6'h, 6'i and 6'j were found to demonstrate selective and potent inhibitory activity against Staphylococcus aureus (MICs = 0.25-0.5 µg/mL). When tested against Vero cells, all the compounds were found to be non toxic possessing favourable selectivity index (SI > 10), which encouraged us for carrying out further studies. Compound 6'a (SI > 40) was tested against a number of multiple clinical strains of multi-drug resistant S. aureus and was found to exhibit potent activity, irrespective of the resistant status of the strain. Besides, compound 6'a also exhibited concentration dependent bactericidal activity and synergized with the FDA approved drugs tested. The interesting results obtained suggest the potential utility of the newly synthesized compounds for treatment of multidrug resistant S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Benzamidas/farmacologia , Benzoatos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/toxicidade , Benzamidas/síntese química , Benzamidas/química , Benzamidas/toxicidade , Benzoatos/síntese química , Benzoatos/química , Benzoatos/toxicidade , Chlorocebus aethiops , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Quinazolinonas/toxicidade , Relação Estrutura-Atividade , Células Vero
13.
Eur J Med Chem ; 157: 1056-1067, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30176536

RESUMO

Methicillin and vancomycin resistant Staphylococcus aureus infections are an emerging global health concern leading to increasing morbidity and mortality. Continuous increase in drug resistance has underlined the need for discovery and development of new antibacterial agents acting via novel mechanisms to overcome this pressing issue. In this context, a number of 1,2,3-triazole linked 4(3H)-quinazolinone derivatives were designed and synthesized as potent antibacterial agents. When evaluated against ESKAP pathogen panel, compounds 7a, 7b, 7c, 7e, 7f, 7g, 7h, 7i, 9a, 9c, 9d and 9e exhibited significantly selective inhibitory activities towards Staphylococcus aureus (MIC = 0.5-4 µg/mL). To understand and confirm the specificity of these compounds, the compounds 7a and 9a were tested against E. coli and A. baumannii in combination with sub-lethal concentrations of Polymyxin B nonapeptide (PMBN) and were found to be inactive. This clearly indicated that these compounds possess specific and potent activity towards S. aureus and are inactive against gram-negative pathogens. Encouragingly, the compounds were also found to be non toxic to Vero cells and displayed favourable selectivity index (SI = 40 to 80). Furthermore, 7a and 9a were found to possess potent inhibitory activity when tested against multidrug resistant S. aureus including strains resistant to vancomycin (MIC values 0.5-32 µg/mL), indicating that the compounds are able to escape current drug-resistance mechanisms. With the potent anti-bacterial activity exhibited the new series of 1,2,3-triazole linked 4(3H)-quinazolinones have emerged as promising candidates for treating multidrug resistant Staphylococcus aureus infections.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinazolinonas/farmacologia , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinonas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Relação Estrutura-Atividade , Triazóis/química
14.
J Pharm Biomed Anal ; 160: 89-98, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30075398

RESUMO

Olaparib (OLA) is a poly ADP ribose polymerase (PARP) enzyme inhibitor used to treat prostate, ovarian and breast cancer. The drug substance OLA was subjected to forced degradation as per ICH prescribed guidelines. It was degraded in hydrolytic (acidic and basic) and oxidative stress conditions and yielded four degradation products (DPs) while it remained stable in neutral hydrolytic, dry heat and photolytic stress conditions. A stability indicating assay method was developed to separate OLA and its DPs using InertSustain C18 column (250 × 4.6 mm, 5 µm) with a gradient mobile phase of 10 mM ammonium acetate (pH 4.5) and acetonitrile (ACN) at a flow rate of 1 mL min-1. The characterization of DPs was carried out by using liquid chromatography-electrospray ionization-quadrupole-time of flight tandem mass spectrometry (LC-ESI-Q-TOF-MS/MS). Major degradation products (DP-1 and DP-2) were isolated by using preparative HPLC and structures were further confirmed by using NMR spectroscopy. All the obtained DPs were new and not reported previously. The developed chromatographic method was validated as per ICH Q2 (R1) guideline and USP general chapter on method validation.


Assuntos
Desenvolvimento de Medicamentos/normas , Indústria Farmacêutica/normas , Estabilidade de Medicamentos , Ftalazinas/análise , Piperazinas/análise , Inibidores de Poli(ADP-Ribose) Polimerases/análise , Cromatografia Líquida de Alta Pressão/métodos , Desenvolvimento de Medicamentos/métodos , Guias como Assunto , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Oxirredução , Fotólise , Ftalazinas/química , Piperazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem
15.
Bioorg Chem ; 81: 175-183, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130650

RESUMO

Occurrence of infections due to the drug resistant Staphylococcus aureus is on rise necessitating the need for rapid development of new antibacterial agents. In our present work, a series of new 3-phenylquinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP (E. coli, S. aureus, K. pneumoniae, A. baumannii, P. aeroginosa) pathogen panel and pathogenic mycobacterial strains. The study revealed that compounds 4a, 4c, 4e, 4f, 4g, 4i, 4o and 4p exhibited selective and potent inhibitory activity against Staphylococcus aureus with MIC values in the range of 0.125-8 µg/mL. Further, the compounds 4c, 4e and 4g were found to be non toxic to Vero cells (CC50 = >10->100 µg/mL) and exhibited favourable selectivity index (SI = 40->200). The compounds 4c, 4e and 4g also showed potent inhibitory activity against various MDR-S. aureus including VRSA. The promising results obtained indicated the potential use of the above series of compounds as promising antibacterial agents for the treatment of multidrug resistant Staphylococcus aureus infections.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinazolinonas/farmacologia , Resistência a Vancomicina/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade
16.
Bioorg Chem ; 77: 515-526, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459129

RESUMO

A series of imidazo[2,1-b]thiazole-benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity against four human cancer cell lines i.e.; HeLa (cervical), A549 (lung), MCF-7 (breast) and DU-145 (prostate) along with normal HEK-293 cell line. Amongst them, conjugate 6d displayed significant cytotoxicity against human lung cancer cell line, A549 with IC50 value 1.08 µM. Further, cell cycle analysis revealed that this compound arrested the cell cycle at G2/M phase in A549 cells. Furthermore, the tubulin polymerization assay results suggest that this conjugate (6d) exhibits significant inhibitory effect on the tubulin assembly with an IC50 value of 1.68 µM. Moreover, the apoptotic inducing properties of compound 6d was confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and annexin V-FITC assay. Further, molecular docking studies revealed that compound 6d occupied the colchicine binding site.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Imidazóis/farmacologia , Microtúbulos/efeitos dos fármacos , Tiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...