Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 15(6): 1566-1574, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32320205

RESUMO

Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.


Assuntos
Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala/métodos , Mapas de Interação de Proteínas , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Modelos Químicos , Reprodutibilidade dos Testes
2.
ACS Chem Biol ; 11(8): 2140-8, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27219844

RESUMO

Protein-protein interactions (PPIs) represent an enormous source of opportunity for therapeutic intervention. We and others have recently pinpointed key rules that will help in identifying the next generation of innovative drugs to tackle this challenging class of targets within the next decade. We used these rules to design an oriented chemical library corresponding to a set of diverse "PPI-like" modulators with cores identified as privileged structures in therapeutics. In this work, we purchased the resulting 1664 structurally diverse compounds and evaluated them on a series of representative protein-protein interfaces with distinct "druggability" potential using homogeneous time-resolved fluorescence (HTRF) technology. For certain PPI classes, analysis of the hit rates revealed up to 100 enrichment factors compared with nonoriented chemical libraries. This observation correlates with the predicted "druggability" of the targets. A specific focus on selectivity profiles, the three-dimensional (3D) molecular modes of action resolved by X-ray crystallography, and the biological activities of identified hits targeting the well-defined "druggable" bromodomains of the bromo and extraterminal (BET) family are presented as a proof-of-concept. Overall, our present study illustrates the potency of machine learning-based oriented chemical libraries to accelerate the identification of hits targeting PPIs. A generalization of this method to a larger set of compounds will accelerate the discovery of original and potent probes for this challenging class of targets.


Assuntos
Descoberta de Drogas , Proteínas/química , Bibliotecas de Moléculas Pequenas , Cristalografia por Raios X , Mapeamento de Interação de Proteínas
3.
Eur J Med Chem ; 54: 949-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22749190

RESUMO

In search of a next generation molecule to the novel wake promoting agent modafinil, a series of diphenyl ether derived wakefulness enhancing agents (in rat) was developed. From this work, racemic compound 16 was separated into its chiral enantiomers to profile them individually.


Assuntos
Compostos Benzidrílicos/farmacologia , Vigília/efeitos dos fármacos , Animais , Compostos Benzidrílicos/química , Inibidores das Enzimas do Citocromo P-450 , Descoberta de Drogas , Humanos , Modafinila , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA