Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895332

RESUMO

Background: Premature infants often experience frequent hypoxic episodes due to immaturity of respiratory control that may result in disturbances of gray and white matter development and long-term cognitive and behavioral abnormalities. We hypothesize that neonatal intermittent hypoxia alters cortical maturation of excitatory and inhibitory circuits that can be detected early with functional MRI. Methods: C57BL/6 mouse pups were exposed to an intermittent hypoxia (IH) regimen consisting of 12 to 20 daily hypoxic episodes of 5% oxygen exposure for 2 min at 37C from P3 to P7, followed by MRI at P12 and electrophysiological recordings in cortical slices and in vivo at several time points between P7 and P13. Behavioral tests were conducted at P41-P50 to assess animal activity and motor learning. Results: Adult mice after neonatal IH exhibited hyperactivity in open field test and impaired motor learning in complex wheel tasks. Patch clamp and evoked field potential electrophysiology revealed increased glutamatergic transmission accompanied by elevation of tonic inhibition. A decreased synaptic inhibitory drive was evidenced by miniature IPSC frequency on pyramidal cells, multi-unit activity recording in vivo in the motor cortex with selective GABA A receptor inhibitor picrotoxin injection, as well as by the decreased interneuron density at P13. There was also an increased tonic depolarizing effect of picrotoxin after IH on principal cells' membrane potential on patch clamp and direct current potential in extracellular recordings. The amplitude of low-frequency fluctuation on resting-state fMRI was larger, with a larger increase after picrotoxin injection in the IH group. Conclusions: Increased excitatory glutamatergic transmission, decreased numbers, and activity of inhibitory interneurons after neonatal IH may affect the maturation of connectivity in cortical networks, resulting in long-term cognitive and behavioral changes, including impaired motor learning and hyperactivity. Functional MRI reveals increased intrinsic connectivity in the sensorimotor cortex, suggesting neuronal dysfunction in cortical maturation after neonatal IH. The increased tonic inhibition, presumably due to tonic extrasynaptic GABA receptor drive, may be compensatory to the elevated excitatory glutamatergic transmission.

2.
Gut Microbes ; 16(1): 2333808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533575

RESUMO

Premature infants lack a normal intestinal microbial community and also at risk of perinatal hypoxic-ischemic (HI) brain injury, which is considered to be one of the major factors for motor, sensory, and cognitive deficits. We hypothesized that neonatal gut microbiota composition modulated the immune reaction and severity of neonatal H-I brain injury. Neonatal C57BL/6J mouse pups were exposed to H-I protocol consisting of permanent left carotid artery ligation, followed by 8% hypoxia for 60 min. Microbial manipulation groups included 1) antibiotic treatment, E18 (maternal) to P5; 2) antibiotic treatment E18 to P5 + E. coli gavage; 3) antibiotic treatment E18 to P5 + B. infantis gavage; and 4) saline to pups with dams getting fresh water. The extent of brain injury and recovery was measured on MRI. Edematous injury volume was significantly higher in E. coli group than that in B. infantis group and in fresh water group. Gene expression in brains of pro-inflammatory cytokines (IL1ß, IL6, IL2, TNF-α and toll-like receptors 2-6) were elevated to a greater extent in the E. coli group at P10, no injury, and at P13, 72 hours after H-I relative to sham control and B. infantis groups. Significant effects of microbiome and brain injury and interaction of these factors were found in abundance of major phyla. The neuroinflammatory response and brain injury after neonatal hypoxia-ischemia are affected by intestinal microbiota, providing opportunities for therapeutic intervention through targeting the early colonization and development of the gut microbiota.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Hipóxia-Isquemia Encefálica , Animais , Ratos , Camundongos , Recém-Nascido , Gravidez , Feminino , Humanos , Animais Recém-Nascidos , Ratos Wistar , Escherichia coli , Camundongos Endogâmicos C57BL , Lesões Encefálicas/metabolismo , Isquemia/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Hipóxia/metabolismo , Antibacterianos/farmacologia
3.
NMR Biomed ; 36(7): e4915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36895100

RESUMO

An important advantage of imaging fixed tissue is a gain in signal-to-noise ratio and in resolution due to unlimited scan time. However, the fidelity of quantitative MRI parameters in fixed brain tissue, particularly in developmental settings, requires validation. Macromolecular proton fraction (MPF) and fractional anisotropy (FA) indices are quantitative markers of myelination and axonal integrity relevant to preclinical and clinical research. The goal of this study was to assert the correspondence of MR-derived markers of brain development MPF and FA between in vivo and fixed tissue measures. MPF and FA were compared in several white and gray matter structures of the normal mouse brain at 2, 4, and 12 weeks of age. At each developmental stage, in vivo imaging was performed, followed by paraformaldehyde fixation and a second imaging session. MPF maps were acquired from three source images (magnetization transfer weighted, proton density weighted, and T1 weighted), and FA was obtained from diffusion tensor imaging. The MPF and FA values, measured in the cortex, striatum, and major fiber tracts, were compared before and after fixation using Bland-Altman plots, regression analysis, and analysis of variance. MPF values of the fixed tissue were consistently greater than those from in vivo measurements. Importantly, this bias varied significantly with brain region and the developmental stage of the tissue. At the same time, FA values were preserved after fixation, across tissue types and developmental stages. The results of this study suggest that MPF and FA in fixed brain tissue can be used as a proxy for in vivo measurements, but additional considerations should be made to correct for the bias in MPF.


Assuntos
Prótons , Substância Branca , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Substâncias Macromoleculares/metabolismo , Substância Branca/metabolismo , Processamento de Imagem Assistida por Computador/métodos
4.
Neuroimage ; 270: 119974, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848973

RESUMO

INTRODUCTION: Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS: New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS: MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION: Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Coelhos , Animais , Prótons , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/ultraestrutura , Neuritos
5.
Exp Neurol ; 337: 113575, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358869

RESUMO

To elucidate the mechanisms of memory impairment after chronic neonatal intermittent hypoxia (IH), we employed a mice model of severe IH administered at postnatal days 3 to 7. Since prior studies in this model did not demonstrate increased cell death, our primary hypothesis was that IH causes a functional disruption of synaptic plasticity in hippocampal neurons. In vivo recordings of Schaffer collateral stimulation-induced synaptic responses during and after IH in the CA1 region of the hippocampus revealed pathological late phase hypoxic long term potentiation (hLTP) (154%) that lasted more than four hours and could be reversed by depotentiation with low frequency stimulation (LFS), or abolished by NMDA and PKA inhibitors (MK-801 and CMIQ). Furthermore, late phase hLTP partially occluded normal physiological LTP (pLTP) four hours after IH. Early and late hLTP phases were induced by neuronal depolarization and Ca2+ influx, determined with manganese enhanced fMRI, and had increased both AMPA and NMDA - mediated currents. This was consistent with mechanisms of pLTP in neonates and also consistent with mechanisms of ischemic LTP described in vitro with OGD in adults. A decrease of pLTP was also recorded on hippocampal slices obtained 2 days after IH. This decrease was ameliorated by MK-801 injections prior to each IH session and restored by LFS depotentiation. Occlusion of pLTP and the observed decreased proportion of NMDA-only silent synapses after neonatal hLTP may explain long term memory, behavioral deficits and abnormal synaptogenesis and pruning following neonatal IH.


Assuntos
Hipóxia Encefálica/fisiopatologia , Potenciação de Longa Duração , Plasticidade Neuronal , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Sinalização do Cálcio , Morte Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipóxia Encefálica/diagnóstico por imagem , Hipóxia Encefálica/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/metabolismo , Técnicas de Patch-Clamp
6.
Int J Dev Neurosci ; 74: 27-37, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30858028

RESUMO

Apnea of prematurity is a common clinical condition that occurs in premature infants and results in intermittent hypoxia (IH) to brain and other organs. While short episodes of apnea are considered of no clinical significance, prolonged apnea with bradycardia and large oxygen desaturation is associated with adverse neurological and cognitive outcome. The mechanisms of cognitive deficits in IH are poorly understood. We hypothesized that brief but multiple episodes of severe oxygen desaturation accompanied by bradycardia may affect early and late synaptic plasticity and produce long-term cognitive deficits. C57BL/6 mouse pups were exposed to IH paradigm consisting of alternating cycles of 5% oxygen for 2.5 min and room air for 5-10 min, 2 h a day from P3 to P7. Long term potentiation (LTP) of synaptic strength in response to high frequency stimulation in hippocampal slices were examined 3 days and 6 weeks after IH. LTP was decreased in IH group relative to controls at both time points. That decrease was associated with deficits in spatial memory on Morris water maze and context fear conditioning test. Hypomyelination was observed in multiple gray and white matter areas on in vivo MRI using micromolecule proton fraction and ex vivo diffusion tensor imaging. No difference in caspase labeling was found between control and IH groups. We conclude that early changes in synaptic plasticity occurring during severe episodes of neonatal IH and persisting to adulthood may represent functional and structural substrate for long term cognitive deficits.


Assuntos
Hipóxia/complicações , Hipóxia/patologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/etiologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Condicionamento Psicológico , Modelos Animais de Doenças , Estimulação Elétrica , Comportamento Exploratório , Medo , Feminino , Frequência Cardíaca/fisiologia , Hipocampo/fisiologia , Hipóxia/diagnóstico por imagem , Relações Interpessoais , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio/fisiologia
7.
Front Neurol ; 9: 1183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30705663

RESUMO

Rabbit kits after global antenatal hypoxic-ischemic injury exhibit motor deficits similar to humans with cerebral palsy. We tested several mechanisms previously implicated in spinal hyper-excitability after perinatal brain injury that may explain muscle hypertonia in newborns. Stiffness of hind limb muscles during passive stretch, electromyogram, and spinal excitability by Hoffman reflex, were assessed in rabbit kits with muscle hypertonia after global hypoxic-ischemic brain injury and naïve controls. Affected muscle architecture, motoneuron morphology, primary afferents density, gliosis, and KCC2 expression transporter in the spinal cord were also examined. Decrease knee stiffness after anesthetic administration was larger, but residual stiffness was higher in hypertonic kits compared to controls. Hypertonic kits exhibited muscle shortening and atrophy, in both agonists and antagonists. Sarcomere length was longer in tibialis anterior in hypertonic kits than in controls. Hypertonic kits had decreased rate dependent depression and increased Hmax/Mmax in H-reflex. Motor neuron soma sizes, primary afferent density were not different between controls and hypertonic kits. Length of dendritic tree and ramification index were lower in hypertonic group. Gene expression of KCC2 was lower in hypertonic kits, but protein content was not different between the groups. In conclusion, while we found evidence of decreased supraspinal inhibitory control and increased excitability by H-reflex that may contribute to neuronal component in hypertonia, increased joint resistance to stretch was explained predominantly by changes in passive properties of muscles and joints. We did not find structural evidence of increased sensory afferent input or morphological changes in motoneurons that might explain increased excitability. Gliosis, observed in spinal gray matter, may contribute to muscle hypertonia.

8.
PLoS One ; 7(8): e40898, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870207

RESUMO

We previously showed that the time-dependent intensification ("incubation") of cue-induced cocaine seeking after withdrawal from extended-access cocaine self-administration is accompanied by accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) in the rat nucleus accumbens (NAc). These results suggest an enduring change in Ca(2+) signaling in NAc dendritic spines. The purpose of the present study was to determine if Ca(2+) signaling via NMDA receptors (NMDARs) is also altered after incubation. Rats self-administered cocaine or saline for 10 days (6 h/day). After 45-47 days of withdrawal, NMDAR-mediated Ca(2+) entry elicited by glutamate uncaging was monitored in individual NAc dendritic spines. NMDAR currents were simultaneously recorded using whole cell patch clamp recordings. We also measured NMDAR subunit levels in a postsynaptic density (PSD) fraction prepared from the NAc of identically treated rats. NMDAR currents did not differ between groups, but a smaller percentage of spines in the cocaine group responded to glutamate uncaging with NMDAR-mediated Ca(2+) entry. No significant group differences in NMDAR subunit protein levels were found. The decrease in the proportion of spines showing NMDAR-mediated Ca(2+) entry suggests that NAc neurons in the cocaine group contain more spines which lack NMDARs (non-responding spines). The fact that cocaine and saline groups did not differ in NMDAR currents or NMDAR subunit levels suggests that the number of NMDARs on responding spines is not significantly altered by cocaine exposure. These findings are discussed in light of increases in dendritic spine density in the NAc observed after withdrawal from repeated cocaine exposure.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Cocaína/efeitos adversos , Espinhas Dendríticas/metabolismo , Inibidores da Captação de Dopamina/efeitos adversos , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Cocaína/metabolismo , Espinhas Dendríticas/patologia , Inibidores da Captação de Dopamina/administração & dosagem , Masculino , Núcleo Accumbens/patologia , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/patologia , Fatores de Tempo
9.
PLoS One ; 7(12): e52056, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284867

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca(2+) homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca(2+) signaling, predominantly through the ER-localized inositol triphosphate (IP(3)) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca(2+) upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca(2+) imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca(2+) signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aß deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca(2+) aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Retículo Endoplasmático/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Dantroleno/farmacologia , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transmissão Sináptica/efeitos dos fármacos
10.
Synapse ; 65(2): 168-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20665696

RESUMO

The nucleus accumbens (NAc) is a limbic structure in the forebrain that plays a critical role in cognitive function and addiction. Dopamine modulates activity of medium spiny neurons (MSNs) in the NAc. Both dopamine D1-like and D2-like receptors (including D1R or D(1,5)R and D2R or D(2,3,4)R, respectively) are thought to play critical roles in cocaine addiction. Our previous studies demonstrated that repeated cocaine exposure (which alters dopamine transmission) decreases excitability of NAc MSNs in cocaine-sensitized, withdrawn rats. This decrease is characterized by a reduction in voltage-sensitive Na(+) currents and high voltage-activated Ca(2+) currents, along with increased voltage-gated K(+) currents. These changes are associated with enhanced activity in the D1R/cAMP/PKA/protein phosphatase 1 pathway and diminished calcineurin function. Although D1R-mediated signaling is enhanced by repeated cocaine exposure, little is known whether and how the D2R is implicated in the cocaine-induced NAc dysfunction. Here, we performed a combined electrophysiological, biochemical, and neuroimaging study that reveals the cocaine-induced dysregulation of Ca(2+) homeostasis with involvement of D2R. Our novel findings reveal that D2R stimulation reduced Ca(2+) influx preferentially via the L-type Ca(2+) channels and evoked intracellular Ca(2+) release, likely via inhibiting the cAMP/PKA cascade, in the NAc MSNs of drug-free rats. However, repeated cocaine exposure abolished the D2R effects on modulating Ca(2+) homeostasis with enhanced PKA activity and led to a decrease in whole-cell Ca(2+) influx. These adaptations, which persisted for 21 days during cocaine abstinence, may contribute to the mechanism of cocaine withdrawal.


Assuntos
Cálcio/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Homeostase/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Análise de Variância , Animais , Calcineurina/farmacologia , Canais de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Salicilamidas/farmacologia , Fatores de Tempo
11.
Channels (Austin) ; 5(1): 9-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21139422

RESUMO

Ryanodine receptor (RyR)-mediated Ca(2+) dysregulation is associated with Alzheimer's disease (AD) neuropathology. Using 2-photon Ca(2+) imaging and patch clamp recordings in brain slice preparations from young 3xTg-AD and NonTg control mice, we recently demonstrated that RyR-mediated Ca(2+) -induced Ca(2+) release (CICR) is substantially increased within dendrites from AD neurons, such that synaptic stimulation alone is sufficient to generate aberrant CICR. We also observed supra-additive Ca(2+) release upon coincident RyR activation with synaptic stimulation in 3xTg-AD mice. Here, we describe an additional observed phenomenon: generation of patterned Ca(2+) oscillations in the spines and dendrites from AD neurons upon coincident RyR and synaptic stimulation. As the temporal entrainment of Ca(2+) signals influences many downstream cellular and synaptic functions, these abnormal oscillatory patterns may be associated with the structural and functional breakdown of synapses in AD.


Assuntos
Doença de Alzheimer/metabolismo , Sinalização do Cálcio , Dendritos/metabolismo , Neurônios/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/genética , Animais , Cafeína/farmacologia , Dendritos/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Transmissão Sináptica , Fatores de Tempo
12.
J Neurosci ; 30(36): 12128-37, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826675

RESUMO

Deficits in synaptic function, particularly through NMDA receptors (NMDARs), are linked to late-stage cognitive impairments in Alzheimer's disease (AD). At earlier disease stages, however, there is evidence for altered endoplasmic reticulum (ER) calcium signaling in human cases and in neurons from AD mouse models. Despite the fundamental importance of calcium to synaptic function, neither the extent of ER calcium dysregulation in dendrites nor its interaction with synaptic function in AD pathophysiology is known. Identifying the mechanisms underlying early synaptic calcium dysregulation in AD pathogenesis is likely a key component to understanding, and thereby preventing, the synapse loss and downstream cognitive impairments. Using two-photon calcium imaging, flash photolysis of caged glutamate, and patch-clamp electrophysiology in cortical brain slices, we examined interactions between synaptically and ER-evoked calcium release at glutamatergic synapses in young AD transgenic mice. We found increased ryanodine receptor-evoked calcium signals within dendritic spine heads, dendritic processes, and the soma of pyramidal neurons from 3xTg-AD and TAS/TPM AD mice relative to NonTg controls. In addition, synaptically evoked postsynaptic calcium responses were larger in the AD strains, as were calcium signals generated from NMDAR activation. However, calcium responses triggered by back-propagating action potentials were not different. Concurrent activation of ryanodine receptors (RyRs) with either synaptic or NMDAR stimulation generated a supra-additive calcium response in the AD strains, suggesting an aberrant calcium-induced calcium release (CICR) effect within spines and dendrites. We propose that presenilin-linked disruptions in RyR signaling and subsequent CICR via NMDAR-mediated calcium influx alters synaptic function and serves as an early pathogenic factor in AD.


Assuntos
Doença de Alzheimer/patologia , Agonistas de Aminoácidos Excitatórios/farmacocinética , N-Metilaspartato/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Cloreto de Cádmio/farmacologia , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Interações Medicamentosas , Estimulação Elétrica/métodos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Heparina/farmacologia , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Mutação/genética , Técnicas de Patch-Clamp/métodos , Córtex Pré-Frontal/patologia , Presenilina-1/genética , Células Piramidais/patologia , Células Piramidais/ultraestrutura , Transglutaminases , Proteínas tau/genética
13.
J Neurosci ; 29(30): 9458-70, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19641109

RESUMO

Presenilin mutations result in exaggerated endoplasmic reticulum (ER) calcium release in cellular and animal models of Alzheimer's disease (AD). In this study, we examined whether dysregulated ER calcium release in young 3xTg-AD neurons alters synaptic transmission and plasticity mechanisms before the onset of histopathology and cognitive deficits. Using electrophysiological recordings and two-photon calcium imaging in young (6-8 weeks old) 3xTg-AD and non-transgenic (NonTg) hippocampal slices, we show a marked increase in ryanodine receptor (RyR)-evoked calcium release within synapse-dense regions of CA1 pyramidal neurons. In addition, we uncovered a deviant contribution of presynaptic and postsynaptic ryanodine receptor-sensitive calcium stores to synaptic transmission and plasticity in 3xTg-AD mice that is not present in NonTg mice. As a possible underlying mechanism, the RyR2 isoform was found to be selectively increased more than fivefold in the hippocampus of 3xTg-AD mice relative to the NonTg controls. These novel findings demonstrate that 3xTg-AD CA1 neurons at presymptomatic ages operate under an aberrant, yet seemingly functional, calcium signaling and synaptic transmission system long before AD histopathology onset. These early signaling alterations may underlie the later synaptic breakdown and cognitive deficits characteristic of later stage AD.


Assuntos
Cálcio/metabolismo , Hipocampo/fisiologia , Células Piramidais/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinapses/fisiologia , Doença de Alzheimer , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/fisiologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptor A1 de Adenosina/metabolismo , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia
14.
Eur J Neurosci ; 23(1): 239-50, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16420433

RESUMO

The amygdala plays key roles in several aspects of addiction to drugs of abuse. This brain structure has been implicated in behaviours that reflect drug reward, drug seeking, and the aversive effects of drug withdrawal. Using a model that involves repeated cocaine injections to approximate 'binge' intoxication, we show in rats that during cocaine withdrawal, the impact of rewarding brain stimulation is attenuated, as quantified by alterations in intracranial self-stimulation (ICSS) behaviour. These behavioural signs of withdrawal are accompanied by enhancements of glutamatergic synaptic transmission within the lateral amygdala (LA) that occlude electrically induced long-term potentiation (LTP) in tissue slices. Synaptic enhancements during periods of cocaine withdrawal are mechanistically similar to LTP induced with electrical stimulation in control slices, as both forms of synaptic plasticity involve an increase in glutamate release. These results suggest that mechanisms of LTP within the amygdala are recruited during withdrawal from repeated exposure to cocaine. As such, they raise the possibility that the development and maintenance of addictive behaviours may involve, at least in part, mechanisms of synaptic plasticity within specific amygdala circuits.


Assuntos
Tonsila do Cerebelo/fisiologia , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Comportamento Animal , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Medo , Agonistas GABAérgicos/farmacologia , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Masculino , Muscimol/farmacologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Reflexo de Sobressalto/efeitos da radiação , Autoadministração , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
15.
J Neurosci ; 23(36): 11427-35, 2003 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-14673007

RESUMO

Arachidonic acid metabolites have been proposed as signaling molecules in hippocampal long-term potentiation (LTP) and long-term depression (LTD) for >15 years. However, the functional role of these molecules remains controversial. Here we used a multidisciplinary biochemical, electrophysiological, and genetic approach to examine the function of the 12-lipoxygenase metabolites of arachidonic acid in long-term synaptic plasticity at CA3-CA1 synapses. We found that the 12-lipoxygenase pathway is required for the induction of metabotropic glutamate receptor-dependent LTD (mGluR-LTD), but is not required for LTP: (1) Hippocampal homogenates were capable of synthesizing the 12-lipoxygenase metabolite of arachidonic acid, 12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid (HETE). (2) Stimulation protocols that induce mGluR-LTD lead to a release of 12-(S)-HETE from acute hippocampal slices. (3) A mouse in which the leukocyte-type 12-lipoxygenase (the neuronal isoform) was deleted through homologous recombination was deficient in mGluR-LTD, but showed normal LTP. (4) Pharmacological inhibition of 12-lipoxygenase also blocked induction of mGluR-LTD. (5) Finally, direct application of 12(S)-HPETE, but not 15(S)-HPETE, to hippocampal slices induced a long-term depression of synaptic transmission that mimicked and occluded mGluR-LTD induced by synaptic stimulation. Thus, 12(S)-hydroperoxyeicosa-5Z, 8Z, 10E, 14Z-tetraenoic acid (12(S)-HPETE), a 12-lipoxygenase metabolite of arachidonic acid, satisfies all of the criteria of a messenger molecule that is actively recruited for the induction of mGluR-LTD.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Hipocampo/fisiologia , Leucotrienos/metabolismo , Depressão Sináptica de Longo Prazo , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animais , Animais Recém-Nascidos , Araquidonato 12-Lipoxigenase/genética , Ácido Araquidônico/metabolismo , Células Cultivadas , Potenciais Evocados , Hipocampo/citologia , Hipocampo/enzimologia , Leucotrienos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Células Piramidais/enzimologia , Receptor de Glutamato Metabotrópico 5 , Sinapses/fisiologia
16.
Proc Natl Acad Sci U S A ; 100(7): 4275-80, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12629219

RESUMO

A significant fraction of the total calciumcalmodulin-dependent protein kinase II (CaMKII) activity in neurons is associated with synaptic connections and is present in nerve terminals, thus suggesting a role for CaMKII in neurotransmitter release. To determine whether CaMKII regulates neurotransmitter release, we generated and analyzed knockout mice in which the dominant alpha-isoform of CaMKII was specifically deleted from the presynaptic side of the CA3-CA1 hippocampal synapse. Conditional CA3 alpha-CaMKII knockout mice exhibited an unchanged basal probability of neurotransmitter release at CA3-CA1 synapses but showed a significant enhancement in the activity-dependent increase in probability of release during repetitive presynaptic stimulation, as was shown with the analysis of unitary synaptic currents. These data indicate that alpha-CaMKII serves as a negative activity-dependent regulator of neurotransmitter release at hippocampal synapses and maintains synapses in an optimal range of release probabilities necessary for normal synaptic operation.


Assuntos
Encéfalo/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Ácido Glutâmico/fisiologia , Hipocampo/fisiologia , Neurotransmissores/metabolismo , Sinapses/fisiologia , Animais , Encéfalo/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/deficiência , Potenciais Pós-Sinápticos Excitadores , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA