Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38794260

RESUMO

In the European Union, bioequivalence (BE) for narrow therapeutic index (NTI) drugs is currently demonstrated when the 90% confidence interval for the ratio of the population geometric means of the test and reference products for AUC, and in some cases for Cmax, falls within the acceptance range of 90.00% to 111.11%. However, meeting this requirement results in an increased difficulty of demonstrating BE and a need for clinical trials with larger subject sample sizes, especially for medium-to-high variability drugs. To address this challenge, a scaled average BE based on the reference product within-subject variability for narrowing the acceptance range of NTI drugs was recently proposed. However, this approach showed increased type I error (T1E), especially close to the cut-off point between the unscaled and scaled portions of the method. Based on simulations, this limitation can be overcome by predefining the protocol the path to be followed: either the fixed 90.00-111.11% acceptance range approach or the previously proposed scaled average BE approach with a slight adjustment of the one-sided significance level α to 0.042 for a 2 × 3 × 3 partial replicate design and without a lower cut-off point. This results in a mixed approach allowing to reduce the sample size whilst not inflating the T1E.

2.
Pharmaceutics ; 14(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365166

RESUMO

Bioequivalence (BE) of products containing narrow therapeutic index (NTI) drugs in the European Union is currently established by demonstrating that the 90% confidence interval for the ratio of the population geometric means of the test compared to the reference product's AUC, and in certain cases Cmax, is included within the tighter acceptance range of 90.00−111.11%. An alternative criterion, consisting of narrowed limits based on the within-subject variability of the reference product, was recently proposed. Its performance for a three-period partial replicate design was tested by simulation in terms of power to show BE, type I error (T1E) and sample size requirements. A new condition, a constraint on the test-to-reference geometric mean ratio (cGMR) to be contained within the range of 90.00−111.11%, was also tested. The probability of showing BE when the products differ more than 10% was increased, but only if the reference product's within-subject variability was moderate-to-high. The inclusion of the additional cGMR limited this. An increase in the T1E (<7%) was observed. The inclusion of the additional cGMR did not change the highest inflation of the T1E. Finally, a significant sample size reduction was observed and the inclusion of the cGMR usually did not increase the required sample size.

3.
Clin Pharmacol Ther ; 111(2): 470-476, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657284

RESUMO

The current regulatory criterion for bioequivalence of narrow therapeutic index (NTI) drugs in the European Union requires that the 90% confidence interval for the ratio of the population geometric means of the test product compared with the reference for area under the plasma concentration-time curve (AUC), and in certain cases maximum plasma drug concentration (Cmax ), to be included within the tighter acceptance range of 90.00-111.11%. As a consequence, sponsors need to recruit a higher number of subjects to demonstrate bioequivalence and this may be seen as increasing the burden for the development of generics. This "one-size-fits-all" criterion is particularly questionable when the within-subject variability of the reference product is moderate to high. As an alternative, we propose a further refined statistical approach where the acceptance range is narrowed based on the within-subject variability of the reference product of the NTI drug, similar to the one used for widening the standard 80.00-125.00% acceptance range for highly variable drugs. The 80.00-125.00% acceptance range is narrowed, only if the within-subject variability is lower than 30%, down to the current NTI acceptance range of 90.00-111.11% when the within-subject variability is 13.93% or lower. Examples within the current European Medicines Agency list of NTI drugs show a considerable reduction in required sample size for drugs like tacrolimus and colchicine, where the predicted within-subject variability is 20-30%. In these cases, this approach is less sample size demanding without any expected increase in the therapeutic risks, since patients treated with reference products with moderate to high within-subject variability are frequently exposed to bioavailability differences larger than 10%.


Assuntos
Colchicina/farmacocinética , Ciclosporina/farmacocinética , Aprovação de Drogas , Everolimo/farmacocinética , Modelos Biológicos , Projetos de Pesquisa , Tacrolimo/farmacocinética , Tiroxina/farmacocinética , Variação Biológica Individual , Colchicina/administração & dosagem , Colchicina/efeitos adversos , Simulação por Computador , Ciclosporina/administração & dosagem , Ciclosporina/efeitos adversos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Europa (Continente) , União Europeia , Everolimo/administração & dosagem , Everolimo/efeitos adversos , Humanos , Tamanho da Amostra , Tacrolimo/administração & dosagem , Tacrolimo/efeitos adversos , Equivalência Terapêutica , Índice Terapêutico do Medicamento , Tiroxina/administração & dosagem , Tiroxina/efeitos adversos , Falha de Tratamento
4.
Colloids Surf B Biointerfaces ; 205: 111865, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34044331

RESUMO

Spreadability is one of the most important physicochemical properties of cosmetic products, according to the consumer. Thus, it is fundamental to develop strategies with the aim to improve the knowledge and predict the behavior of alternatives to synthetic emollients. The main goal of this research article was to correlate different physicochemical attributes, namely spreading value, apparent viscosity, density, saponification value, iodine value, peroxide value, acid value and melting range, with the spreading behavior of sustainable alternatives for petrolatum and dimethicone. The sensitivity and adequacy of each parameter were statistically analyzed, and the models were built by forward selection. The two adjusted and optimized models include viscosity and density as parameters and, in the petrolatum case, the model further includes the melting range, which was also validated as a significant predictor. Furthermore, it was also possible to compare the data obtained with the consumer's perception of the spreading behavior of the studied raw materials. A strong correlation was observed, suggesting that these tools mirror the consumer opinion. The application of these mathematical models is a valuable tool to assist the entire replacement process, which usually is a time-consuming procedure.


Assuntos
Cosméticos , Emolientes , Modelos Teóricos , Pele , Viscosidade
5.
Polymers (Basel) ; 11(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30960092

RESUMO

The present study investigated a new approach to treat superficial skin infections by topical application of minocycline hydrochloride (MH) formulated in a novel starch-based Pickering emulsion (ASt-emulsions). The emulsions were fully characterized in terms of efficacy, as well as in vitro release and permeation studies. The emulsions provided a prolonged MH release, always above its minimum inhibitory concentration against Staphylococcus aureus, although the drug did not permeate through the entire skin layer. The in vitro antibacterial activity of MHASt-emulsions against S. aureus was confirmed and their therapeutic efficacy was assessed using an in vitro skin-adapted agar diffusion test. In vivo antibacterial activity, evaluated using the tape-stripping infection model in mice, showed the topical administration of MH was effective against superficial infections caused by S. aureus. This study supports the potential of ASt-emulsions as promising platforms for topical antibiotic delivery, contributing to a new perspective on the treatment of superficial bacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...