Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7225-7237, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299489

RESUMO

We demonstrate power-efficient, thermo-optic, silicon nitride waveguide phase shifters for blue, green, and yellow wavelengths. The phase shifters operated with low power consumption due to a suspended structure and multi-pass waveguide design. The devices were fabricated on 200-mm silicon wafers using deep ultraviolet lithography as part of an active visible-light integrated photonics platform. The measured power consumption to achieve a π phase shift (averaged over multiple devices) was 0.78, 0.93, 1.09, and 1.20 mW at wavelengths of 445, 488, 532, and 561 nm, respectively. The phase shifters were integrated into Mach-Zehnder interferometer switches, and 10 - 90% rise(fall) times of about 570(590) µs were measured.

2.
Sci Rep ; 8(1): 1619, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374223

RESUMO

An area efficient novel optical modulator with low operation voltage is designed based on integrated Mach-Zehnder Interferometer with a photonic crystal slab structure as the phase shifter. Plasma dispersion effect is utilized so that photonic band-to-band transition occurs at the operating frequency leading to a high index change (Δn = ~4) for π-phase shift on the modulator. This approach reduces the phase shifter length to a few micrometers (~5 µm) in a silicon on insulator platform and operating voltage required is around 1 V. Low voltage together with short optical interaction length decrease optical losses and power consumption during modulation process providing a great opportunity for size and system cost optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...