Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255925

RESUMO

As the kynurenine pathway's links to inflammation, the immune system, and neurological disorders became more apparent, it attracted more and more attention. It is the main pathway through which the liver breaks down Tryptophan and the initial step in the creation of nicotinamide adenine dinucleotide (NAD+) in mammals. Immune system activation and the buildup of potentially neurotoxic substances can result from the dysregulation or overactivation of this pathway. Therefore, it is not shocking that kynurenines have been linked to neurological conditions (Depression, Parkinson's, Alzheimer's, Huntington's Disease, Schizophrenia, and cognitive deficits) in relation to inflammation. Nevertheless, preclinical research has demonstrated that kynurenines are essential components of the behavioral analogs of depression and schizophrenia-like cognitive deficits in addition to mediators associated with neurological pathologies due to their neuromodulatory qualities. Neurodegenerative diseases have been extensively associated with neuroactive metabolites of the kynurenine pathway (KP) of tryptophan breakdown. In addition to being a necessary amino acid for protein synthesis, Tryptophan is also transformed into the important neurotransmitters tryptamine and serotonin in higher eukaryotes. In this article, a summary of the KP, its function in neurodegeneration, and the approaches being used currently to target the route therapeutically are discussed.


Assuntos
Transtornos Cognitivos , Cinurenina , Animais , Triptofano , Aminoácidos , Inflamação , Mamíferos
2.
J Neurotrauma ; 41(7-8): 1000-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905505

RESUMO

Mild concussive events without loss of consciousness are typically left untreated and can result in neurological abnormalities at later stages of life. No systematic studies have been carried out to determine the effect of concussion or repeated mild concussive episodes on brain vulnerability towards blast exposure. We have evaluated the effect of repeated mild concussive events on the vulnerability of brain to blast exposure using neurobehavioral functional assessments. Rats were subjected to either repeated mild concussive impacts (two impacts 1 week apart using a modified Marmarou weight drop model), a single blast exposure (19 psi using an advanced blast simulator), or a single blast exposure one day after the second mild concussive impact. Neurobehavioral changes were monitored using rotating pole test, open field exploration test, and novel object recognition test. Rotating pole test results indicated that vestibulomotor function was unaffected by blast or repeated mild concussive impacts, but significant impairment was observed in the blast exposed animals who had prior repeated mild concussive impacts. Novel object recognition test revealed short-term memory loss at 1 month post-blast only in rats subjected to both repeated mild concussive impacts and blast. Horizontal activity count, ambulatory activity count, center time and margin time legacies in the open field exploratory activity test indicated that only those rats exposed to both repeated mild concussive impacts and blast develop anxiety-like behaviors at both acute and sub-acute time-points. The results indicate that a history of repeated mild concussive episodes heightens brain vulnerability to blast exposure.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Militares , Ratos , Animais , Humanos , Concussão Encefálica/complicações , Encéfalo , Amnésia , Campanha Afegã de 2001- , Traumatismos por Explosões/complicações
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1153-1167, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357527

RESUMO

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , SARS-CoV-2 , Estresse Oxidativo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/terapia
4.
Neurosci Lett ; 810: 137364, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37391063

RESUMO

Although blast-induced traumatic brain injury (bTBI) has been designated as the signature injury of recent combat operations, its precise pathological mechanism(s) has not been identified thus far. Prior preclinical studies on bTBI demonstrated acute neuroinflammatory cascades which are known to be contributing to neurodegeneration. Danger-associated chemical patterns are released from the injured cells, which activate non-specific pattern recognition receptors, such as toll-like receptors (TLRs) leading to increased expression of inflammatory genes and release of cytokines. Upregulation of specific TLRs in the brain has been described as a mechanism of injury in diverse brain injury models unrelated to blast exposure. However, the expression profile of various TLRs in bTBI has not been investigated thus far. Hence, we have evaluated the expression of transcripts for TLR1-TLR10 in the brain of a gyrencephalic animal model of bTBI. We exposed ferrets to tightly coupled repeated blasts and determined the differential expression of TLRs (TLR1-10) by quantitative RT-PCR in multiple brain regions at 4 hr, 24 hr, 7 days and 28 days post-blast injury. The results obtained indicate that multiple TLRs are upregulated in the brain at 4 hr, 24 hr, 7 days and 28 days post-blast. Specifically, upregulation of TLR2, TLR4 and TLR9 was noted in different brain regions, suggesting that multiple TLRs might play a role in the pathophysiology of bTBI and that drugs that can inhibit multiple TLRs might have enhanced efficacy to attenuate brain damage and thereby improve bTBI outcome. Taken together, these results suggest that several TLRs are upregulated in the brain after bTBI and participate in the inflammatory response and thereby provide new insights into the disease pathogenesis. Therefore, inhibition of multiple TLRs, including TLR2, 4 and 9, simultaneously might be a potential therapeutic strategy for the treatment of bTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Furões , Regulação para Cima , Receptor 2 Toll-Like , Receptor 1 Toll-Like , Encéfalo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Receptores Toll-Like
5.
Cancer Rep (Hoboken) ; 6 Suppl 1: e1830, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150853

RESUMO

BACKGROUND: Choosing the most effective chemotherapeutic agent with safest side effect profile is a common challenge in cancer treatment. Although there are standardized chemotherapy protocols in place, protocol changes made after extensive clinical trials demonstrate significant improvement in the efficacy and tolerability of certain drugs. The pharmacokinetics, pharmacodynamics, and tolerance of anti-cancer medications are all highly individualized. A driving force behind these differences lies within a person's genetic makeup. RECENT FINDINGS: Pharmacogenomics, the study of how an individual's genes impact the processing and action of a drug, can optimize drug responsiveness and reduce toxicities by creating a customized medication regimen. However, these differences are rarely considered in the initial determination of standardized chemotherapeutic protocols and treatment algorithms. Because pharmacoethnicity is influenced by both genetic and nongenetic variables, clinical data highlighting disparities in the frequency of polymorphisms between different ethnicities is steadily growing.  Recent data suggests that ethnic variations in the expression of allelic variants may result in different pharmacokinetic properties of the anti-cancer medication. In this article, the clinical outcomes of various chemotherapy classes in patients of different ethnicities were reviewed. CONCLUSION: Genetic and nongenetic variables contribute to the interindividual variability in response to chemotherapeutic drugs. Considering pharmacoethnicity in the initial determination of standard chemotherapeutic protocols and treatment algorithms can lead to better clinical outcomes of patients of different ethnicities.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polimorfismo Genético
6.
Cells ; 12(8)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190025

RESUMO

Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/uso terapêutico , PPAR gama/metabolismo , Cognição , Inflamação/tratamento farmacológico , Inflamação/complicações
7.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175853

RESUMO

There is mounting evidence that the development of Alzheimer's disease (AD) interacts extensively with immunological processes in the brain and extends beyond the neuronal compartment. Accumulation of misfolded proteins can activate an innate immune response that releases inflammatory mediators and increases the severity and course of the disease. It is widely known that type-I interferon-driven neuroinflammation in the central nervous system (CNS) accelerates the development of numerous acute and chronic CNS diseases. It is becoming better understood how the cyclic GMP-AMP synthase (cGAS) and its adaptor protein Stimulator of Interferon Genes (STING) triggers type-I IFN-mediated neuroinflammation. We discuss the principal elements of the cGAS-STING signaling pathway and the mechanisms underlying the association between cGAS-STING activity and various AD pathologies. The current understanding of beneficial and harmful cGAS-STING activity in AD and the current treatment pathways being explored will be discussed in this review. The cGAS-STING regulation offers a novel therapeutic opportunity to modulate inflammation in the CNS because it is an upstream regulator of type-I IFNs.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Doenças Neuroinflamatórias , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética
8.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1395-1405, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269132

RESUMO

The novel coronavirus, namely, SARS-CoV-2 (COVID-19), broke out two years ago and has caused major global health issues. Adequate treatment options are still lacking for the management of COVID-19 viral infections. Many patients afflicted with COVID-19 may range from asymptomatic to severe symptomatic, triggering poor clinical outcomes, morbidity, and mortality. Cancer is one of the leading causes of death worldwide. It is pertinent to re-examine cancer prevalence during the COVID-19 pandemic to prevent mortality and complications. Understanding the impact of SARS-CoV-2 on cancer is key to appropriate healthcare measures for the treatment and prevention of this vulnerable population. Data was acquired from PubMed using key search terms. Additional databases were utilized, such as the Centers for Disease Prevention and Control, American Cancer Society (ACS), and National Cancer Institute (NCI). Cancer patients are more prone to SARS-CoV-2 infection and exhibit poor health outcomes, possibly due to a chronic immunosuppressive state and anticancer therapies. Male sex, older age, and active cancer disease or previous cancer are risk factors for COVID-19 infection, leading to possible severe complications, including morbidity or mortality. The speculated mechanism for potentially higher mortality or COVID-19 complications is through reduced immune system function and inflammatory processes through cancer disease, anticancer therapy, and active COVID-19 infection. This review includes prostate, breast, ovarian, hematologic, lung, colorectal, esophageal, bladder, pancreatic, cervical, and head and neck cancers. This review should help better maintain the health of cancer patients and direct clinicians for COVID-19 prevention to improve the overall health outcomes.


Assuntos
COVID-19 , Neoplasias , Estados Unidos , Humanos , Masculino , COVID-19/complicações , SARS-CoV-2 , Pandemias/prevenção & controle , Pulmão , Neoplasias/epidemiologia
9.
Brain Sci ; 12(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36291274

RESUMO

Blast-induced traumatic brain injury (bTBI) frequently results in sleep-wake disturbances. However, limited studies have investigated the molecular signaling mechanisms underlying these sleep disturbances, and potentially efficacious therapies are lacking. We investigated the levels of melatonin and genes involved in melatonin synthesis pathway in the pineal glands of Sprague Dawley rats exposed to single and tightly coupled repeated blasts during the night and daytime. Rats were exposed to single and tightly coupled repeated blasts using an advanced blast simulator. The plasma, cerebrospinal fluid (CSF), and pineal gland were collected at 6 h, 24 h, or 1 month postblast at two different time points: one during the day (1000 h) and one at night (2200 h). Differential expressions of genes involved in pineal melatonin synthesis were quantified using quantitative real-time polymerase chain reaction (qRT-PCR). Plasma and CSF melatonin levels were assessed using a commercial melatonin ELISA kit. The plasma and CSF melatonin levels showed statistically significant decreases at 6 h and 24 h in the blast-exposed rats euthanized in the night (in dim light), with no significant alterations noted in rats euthanized in the morning (daylight) at all three-time points. Blast-exposed rats showed statistically significant decreases in Tph1, Aanat, Asmt, and Mtnr1b mRNA levels, along with increased Tph2 mRNA, in the pineal gland samples collected at night at 6 h and 24 h. No significant changes in the mRNA levels of these genes were noted at 1 month. These findings imply that the melatonin circadian rhythm is disrupted following blast exposure, which may be a factor in the sleep disturbances that blast victims frequently experience.

10.
Diab Vasc Dis Res ; 19(3): 14791641221095091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695412

RESUMO

The goal of this study was to analyze the effect of COVID-19 drugs and biologicals on hyperglycemia. A literature search with key terms, such as "COVID-19 drugs and hyperglycemia" and "COVID-19 vaccines and hyperglycemia," was conducted using PubMed through September 2021. The CDC data were referenced for current COVID-19 profile and statistics. The NIH COVID-19 guidelines were referenced for updated treatment recommendations. Micromedex and UpToDate were used for drug and disease information. Current results suggested that corticosteroids (dexamethasone), remdesivir and antivirals (lopinavir and ritonavir) all have the potential to significantly raise blood glucose levels putting patients at elevated risk for severe complications. In contrary, hydroxychloroquine is associated with hypoglycemia, and tocilizumab decreases inflammation which is associated with improving glucose levels. Other anti-cytokine bioactive molecules are correlated with lower blood glucose in patients with and without diabetes mellitus. Ivermectin, used for mild COVID-19 disease, possesses the potential for lowering blood glucose. Covishield, Pfizer-BioNTech, and Moderna have all been associated with hyperglycemia after the first dose. Individualized /personalized patient care is required for diabetic mellitus patients with COVID-19 infection. Improper drug therapy aggravates hyperglycemic conditions and other comorbid conditions, leading to increased morbidity and mortality.


Assuntos
COVID-19 , Diabetes Mellitus , Hiperglicemia , Glicemia , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/diagnóstico , Hiperglicemia/tratamento farmacológico , SARS-CoV-2
11.
Cardiovasc Toxicol ; 22(1): 67-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623620

RESUMO

Administration of Chemotherapeutics, especially doxorubicin (DOX) and cyclophosphamide (CPS), is commonly associated with adverse effects such as myelosuppression and cardiotoxicity. At this time, few approved therapeutic options are currently available for the management of chemotherapy-associated cardiotoxicity. Thus, identification of novel therapeutics with potent cardioprotective properties and minimal adverse effects are pertinent in treating Doxorubicin and Cyclophosphamide-induced cardiotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) is a natural product known to possess several beneficial biological functions including antioxidant, anti-inflammatory and cytoprotective effects. We therefore set to investigate the cardioprotective effects of OIE against Doxorubicin and Cyclophosphamide-induced cardiotoxicity and explore the potential cardioprotective mechanisms involved. Adult male mice were treated with DOX and CPS in combination, OIE alone, or a combination of OIE and DOX & CPS. Swimming test was performed to assess cardiac function. Markers of oxidative stress were assessed by levels of reactive oxygen species (ROS), nitrite, hydrogen peroxide, catalase, and glutathione content. The activity of interleukin converting enzyme and cyclooxygenase was determined as markers of inflammation. Mitochondrial function was assessed by measuring Complex-I activity. Apoptosis was assessed by Caspase-3 and protease activity. Mice treated with DOX and CPS exhibited reduced swim rate, increased oxidative stress, increased inflammation, and apoptosis in the heart tissue. These cardiotoxic effects were significantly reduced by co-administration of OIE. Furthermore, computational molecular docking studies revealed potential binding of DOX and CPS to tyrosine hydroxylase which validated our in vivo findings regarding the inhibition of tyrosine hydroxylase activity. Our current findings indicated that OIE counteracts Doxorubicin and Cyclophosphamide-induced cardiotoxicity-through inhibition of ROS-mediated apoptosis and by blocking the effect on tyrosine hydroxylase. Taken together, our findings suggested that OIE possesses cardioprotective effects to counteract potentially fatal cardiac complications associated with chemotherapy treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bignoniaceae , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Bignoniaceae/química , Cardiotoxicidade , Ciclofosfamida , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Liver Res ; 5(4): 239-242, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900377

RESUMO

BACKGROUND AND AIM: Chronic exposure to chemotherapeutics can lead to severe adverse events including hepatotoxicity. A combination chemotherapy regimen of doxorubicin (DOX) and cyclophosphamide (CPS) is employed in treatment of several cancers such as leukemia, lymphoma, and breast cancer. It is not well understood whether a combination therapy of DOX and CPS can induce hepatotoxicity. We therefore sought to determine whether co-administration of DOX and CPS at their clinically relevant doses and frequency results in hepatotoxicity. METHODS: Male C57BL/6J mice received one intraperitoneal injection of saline or DOX-2mg /kg and CPS-50mg/kg once a week for 4 weeks. After the treatment period, liver histology and various serum biomarkers of hepatotoxicity were assessed. RESULTS: Co-treatment of DOX and CPS did not alter the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, albumin, globulin, or total protein. Similarly, co-administration of DOX and CPS did not result in a noticeable change in liver histology. However, it was notable that the concomitant treatment with DOX and CPS resulted in a significant increase in serum levels of aspartate aminotransferase (AST). Elevated serum AST levels were also associated with increased serum creatinine kinase (CK) levels, suggesting that the elevated serum AST levels are likely due to muscle injury following the co-administration of DOX and CPS. CONCLUSION: Taken together, our results, for the first time, suggest that co-administration of DOX and CPS, at their clinically relevant doses and frequency does not induce a significant hepatotoxicity in the mice.

13.
Vaccines (Basel) ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696303

RESUMO

The widespread increase in multiple severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants is causing a significant health concern in the United States and worldwide. These variants exhibit increased transmissibility, cause more severe disease, exhibit evasive immune properties, impair neutralization by antibodies from vaccinated individuals or convalescence sera, and reinfection. The Centers for Disease Control and Prevention (CDC) has classified SARS-CoV-2 variants into variants of interest, variants of concern, and variants of high consequence. Currently, four variants of concern (B.1.1.7, B.1.351, P.1, and B.1.617.2) and several variants of interests (B.1.526, B.1.525, and P.2) are characterized and are essential for close monitoring. In this review, we discuss the different SARS-CoV-2 variants, emphasizing variants of concern circulating the world and highlight the various mutations and how these mutations affect the characteristics of the virus. In addition, we discuss the most common vaccines and the various studies concerning the efficacy of these vaccines against different variants of concern.

14.
J Integr Neurosci ; 20(2): 321-329, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258930

RESUMO

Ketone bodies have been the topic of research for their possible therapeutic neurotropic effects in various neurological diseases such as Parkinson's disease, dementia, and seizures. However, continuing research on ketone bodies as a prophylactic agent for decreasing the risk for various neurodegenerative diseases is currently required. In this paper, hippocampal HT-22 cells were treated with ß-hydroxybutyric acid at different doses to elucidate the neurotropic effects. In addition, markers of oxidative stress, mitochondrial function, and apoptosis were investigated. As a result, the ketone body (ß-hydroxybutyric acid) showed a significant increase in hippocampal neuronal viability at a moderate dose. Results show that ß-hydroxybutyric acid exhibited antioxidant effect by decreasing prooxidant oxidative stress markers such as reactive oxygen species, nitrite content, and increasing glutathione content leading to decreased lipid peroxidation. Results show that ß-hydroxybutyric acid improved mitochondrial functions by increasing Complex-I and Complex-IV activities and showing that ß-hydroxybutyric acid significantly reduces caspase-1 and caspase-3 activities. Finally, using computational pharmacokinetics and molecular modeling software, we validated the pharmacokinetic effects and pharmacodynamic (N-Methyl-D-aspartic acid and acetylcholinesterase) interactions of ß-hydroxybutyric acid. The computational studies demonstrate that ß-hydroxybutyric acid can interact with N-Methyl-D-aspartic acid receptor and cholinesterase enzyme (the prime pharmacodynamic targets for cognitive impairment) and further validates its oral absorption, distribution into the central nervous system. Therefore, this work highlights the neuroprotective potential of ketone bodies in cognitive-related neurodegenerative diseases.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Apoptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Camundongos
15.
Nat Prod Commun ; 16(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34306298

RESUMO

BACKGROUND: Botanical supplements have been proven to provide beneficial health effects. However, they can induce unintended adverse events such as hepatotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) has several health benefits including anti-inflammatory, anti-arthritic, antifungal, antibacterial, and neuroprotective effects. It is currently unknown whether OIE has the potential to induce hepatotoxicity. PURPOSE: In the current study, we sought to determine whether OIE can induce hepatotoxicity in C57BL/6J mouse model. METHODS: The male mice were fed powdered rodent food (control group) or powdered rodent food mixed with OIE (Sabroxy®, 500mg/kg) daily for 4 weeks. Following the treatment, we assessed liver histology and serum levels of biomarkers commonly associated with liver damage, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). RESULTS: No significant alterations were observed in liver histology, and serum levels of ALT, AST, ALP, bilirubin, albumin, globulin and total protein in the OIE fed mice compared to the control mice. CONCLUSION: Taken together, our results suggest that OIE, when fed at its physiologically relevant dosage, does not induce hepatotoxicity in C57BL/6J mice.

16.
PLoS One ; 16(6): e0252522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081735

RESUMO

While chemotherapy is the most effective therapeutic approach for treating a variety of cancer patients, commonly used chemotherapeutic agents, often induce several adverse effects. Escalating evidence indicates that chemotherapeutics, particularly doxorubicin (DOX) and cyclophosphamide (CPS), induce cognitive impairment associated with central nervous system toxicity. This study was performed to determine neuroprotective effects of Oroxylum indicum extract (OIE) in regard to preventing chemotherapy induced cognitive impairment (CICI) occurring after 4 cycles of DOX (2mg/kg) and CPS (50mg/kg) combination chemotherapy in male C57BL/6J mice. OIE significantly prevented the chemotherapy impaired short-term cognitive performance, exploratory behavior associated with cognitive performance, cognitive performance, and spatial learning and memory in the Y-maze, Open-Field, Novel Object Recognition, and Morris Water Maze tests, respectively. These data suggest that OIE protects from the CICI. OIE decreased the reactive oxygen species and lipid peroxide generated by the chemotherapy treatment in the brain, while also blocking the chemotherapy-induced glutathione depletion. These results establish that OIE exhibits potent antioxidant activity in chemotherapy treated mice. Notably, OIE significantly increased the Complex-I and Complex-IV activities in the brain, indicating that OIE enhances mitochondrial function in the brain. In silico analysis of the major active chemical constituents (Oroxylin A, Baicalein and Chrysin) of OIE indicated that OIE has a favorable absorption, distribution, metabolism and excretion (ADME) profile. Taken together, our results are consistent with the conclusion that OIE prevents CICI by counteracting oxidative stress and perhaps by improving mitochondrial function.


Assuntos
Encéfalo/metabolismo , Comprometimento Cognitivo Relacionado à Quimioterapia/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Animais , Antineoplásicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico
17.
Neurochem Int ; 148: 105066, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004240

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects more than 10 million people worldwide. Oxidative stress and mitochondrial dysfunction play a significant role in altering the homeostasis of energy production and free radical generation. Current PD therapies are focused on reducing the cardinal symptoms rather than preventing disease progression in the patients. Adenosine A2A receptor (A2A R) antagonist (Istradephylline) combined with levodopa shows a promising therapy for PD. In animal studies, caffeine administration showed to improve motor functions and neuroprotective effect in the neurons. Caffeine is probably the most extensively used psychoactive substance. In this current study, we investigated the neuroprotective effect of caffeine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration. Here, we demonstrate that caffeine improves behavioral and neurotransmitter recovery against MPTP-induced toxicity. Caffeine restores endogenous antioxidant levels and suppresses neuroinflammation. Our finding suggests that the blockage of A2AR is a promising disease-modifying therapy for PD. Target engagement strategies could be more beneficial in preventing disease progression rather than symptomatic reliefs in PD patients.


Assuntos
Cafeína/farmacologia , Suplementos Nutricionais , Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Intoxicação por MPTP/patologia , Intoxicação por MPTP/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/tratamento farmacológico , Substância Negra/metabolismo , Substância Negra/patologia
18.
Heliyon ; 7(4): e06730, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33912711

RESUMO

Cannabis is the most commonly used illicit drug worldwide. Recently, cannabis use among young pregnant women has greatly increased. However, prenatal cannabinoid exposure leads to long-lasting cognitive, motor, and behavioral deficits in the offspring and alterations in neural circuitry through various mechanisms. Although these effects have been studied in the hippocampus, the effects of prenatal cannabinoid exposure on the cerebellum are not well elucidated. The cerebellum plays an important role in balance and motor control, as well as cognitive functions such as attention, language, and procedural memories. The aim of this study was to investigate the effects of prenatal cannabinoid exposure on the cerebellum of adolescent offspring. Pregnant rats were treated with synthetic cannabinoid agonist WIN55,212-2, and the offspring were evaluated for various cerebellar markers of oxidative stress, mitochondrial function, and apoptosis. Additionally, signaling proteins associated with glutamate dependent synaptic plasticity were examined. Administration of WIN55,212-2 during pregnancy altered markers of oxidative stress by significantly reducing oxidative stress and nitrite content. Mitochondrial Complex I and Complex IV activities were also enhanced following prenatal cannabinoid exposure. With regard to apoptosis, pP38 levels were significantly increased, and proapoptotic factor caspase-3 activity, pERK, and pJNK levels were significantly decreased. CB1R and GluA1 levels remained unchanged; however, GluN2A was significantly reduced. There was a significant decrease in MAO activity although tyrosine hydroxylase activity was unaltered. Our study indicates that the effects of prenatal cannabinoid exposure on the cerebellum are unique compared to other brain regions by enhancing mitochondrial function and promoting neuronal survival. Further studies are required to evaluate the mechanisms by which prenatal cannabinoid exposure alters cerebellar processes and the impact of these alterations on behavior.

19.
Neurochem Int ; 144: 104958, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444675

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer/enzimologia , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Neuroproteção/fisiologia , Sirtuína 3/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/tratamento farmacológico , Animais , Compostos de Bifenilo/administração & dosagem , Sistemas de Liberação de Medicamentos/tendências , Glucosídeos/administração & dosagem , Humanos , Hidrazinas/administração & dosagem , Indazóis/administração & dosagem , Lignanas/administração & dosagem , Neuroproteção/efeitos dos fármacos , Fenóis/administração & dosagem , Sirtuína 3/antagonistas & inibidores
20.
Cardiol Plus ; 6(4): 231-245, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35368975

RESUMO

Viral infections persist globally, among all ages, gender, and ethnicity. Of particular importance is COVID-19, associated with asymptomatic to severe symptoms, including complications/mortality. Cardiovascular disease (CVD) involves heart and blood vessel disorders including coronary heart disease, cerebrovascular disease, peripheral artery disease, thrombosis, and more. CVD associated with severe COVID-19 includes heart failure, coronary artery disease, cardiomyopathy, hypertension, and cerebrovascular disease/stroke. Data were acquired from PubMed, Google Scholar, Centers for Disease Prevention and Control, and Lexi-Comp using the search terms "COVID-19 and cardiovascular pathology;" "COVID-19 induced CVD;" "Viral infection induced CVD;" and "Viral infection induced heart damage." COVID-19-induced CVD mechanisms include direct viral entry, inflammation, cytokine storm, hypoxia, interferon-mediated immune response, plaque destabilization, stress, and drug-induced causes. Other viral pathologies causing CVD include atherosclerosis, inflammation, cytokine storm, and plaque destabilization. Individual parameters, such as old age, males, and higher body mass index (BMI), are more likely to experience viral-associated complications, possibly explained by patient risk factors or comorbidities. Populations at higher risk include older males with an elevated BMI. Viral mechanisms associated with CVD are similar but differ in disease severity, potentially explained by diverse cytokine profiles where COVID-19 activates different types at higher quantities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...